Bibliographic citations
Pachas, V., (2023). Deducción de las ecuaciones de movimiento y condiciones de contorno de una placa delgada sometida a vibraciones libres mediante el método variacional [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/27518
Pachas, V., Deducción de las ecuaciones de movimiento y condiciones de contorno de una placa delgada sometida a vibraciones libres mediante el método variacional [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/27518
@misc{renati/960950,
title = "Deducción de las ecuaciones de movimiento y condiciones de contorno de una placa delgada sometida a vibraciones libres mediante el método variacional",
author = "Pachas Yeren, Valeria Sofia",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
The objective of this work is to obtain the equation of motion and boundary conditions for a thin free-edge plate undergoing small deflections. Since it is not possible to mathematically derive the boundary conditions by laws of Newton, the system is studied from the energy point of view and then the variational method is applied. In this way, it is necessary to study quantities that can characterize the forces acting on the system as well as the deformations it undergoes and the relationship between them, such quantities are called strain and stress tensors. The strain tensor is obtained by analyzing the deformed body, while the stress tensor is obtained by analyzing the implications of external forces inside the body. A review of the plate theory based on Kirchhoff’s hypotheses should also be made. These concepts will allow obtaining expressions for kinetic energy, potential energy and their variations necessary to apply principle of Hamilton. Thus, it is shown that it is possible to derive the boundary conditions and the equation of motion for thin plates with free edges using the variational method.
This item is licensed under a Creative Commons License