Bibliographic citations
Mendoza, M., (2022). Evaluación de la capacidad inmunogénica de epítopes transplantados en la superficie de proteínas séricas: hacia el desarrollo de nuevas vacunas epitópicas [Universidad Peruana Cayetano Heredia]. https://hdl.handle.net/20.500.12866/11351
Mendoza, M., Evaluación de la capacidad inmunogénica de epítopes transplantados en la superficie de proteínas séricas: hacia el desarrollo de nuevas vacunas epitópicas []. PE: Universidad Peruana Cayetano Heredia; 2022. https://hdl.handle.net/20.500.12866/11351
@mastersthesis{renati/910173,
title = "Evaluación de la capacidad inmunogénica de epítopes transplantados en la superficie de proteínas séricas: hacia el desarrollo de nuevas vacunas epitópicas",
author = "Mendoza Aquije, Manuel Antonio",
publisher = "Universidad Peruana Cayetano Heredia",
year = "2022"
}
The most important vaccines today are mainly recombinant proteins, which are characterized by rapid degradation and short circulation times, so their exposure to the immune system is limited to short periods. In that sense, multiple doses and boosters are necessary to compensate for this limitation. More recently, so-called peptide vaccines, peptides corresponding to immunogenic / protective epitopes that are chemically synthesized and administered in various doses, have been tested with success. Epitopes are the key portion of a protein responsible for the induction of immunity and protection. The use of multiple epitopes constitutes the so-called multiepitopic vaccines, which mainly consist of linear arrays of immunogenic / protective epitopes chemically bound to the surface of soluble proteins that serve as transporters. It is important to note that in this type of vaccines the three-dimensional structure of the peptides is not considered, leaving them oriented basically randomly on the surface of the carrier protein without maintaining a stable three-dimensional structure. The present study would demonstrate a new strategy for the transport of immunogenic epitopes using large and stable serum proteins (with a long circulating half-life), such as serum albumin. The main objective was to prolong the half-life of the epitopes in circulation, and to achieve that in its exposure to the immune system it resembles as closely as possible what happens when the epitope is part of the pathogenic protein, that is, to achieve that the three-dimensional structure of the epitopes is preserved. For this, an immunogenic epitope was selected that was "transplanted" onto the surface of a serum protein, such as albumin, without disturbing its original three-dimensional structure. With this "molecular surgery" assisted by bioinformatic modeling and molecular biology tools, it was possible to transplant an immunogenic epitope on the surface of a serum protein of the organism to be immunized, to create a transformed immunogenic protein with special and convenient characteristics. The careful molecular design of this transformed protein gave the selected epitope an environment that allowed it to adopt a three-dimensional structure and an orientation towards the solvent, similar to that of the epitope when it is part of the native pathogenic protein. The model used to verify the 'proof of concept' of this strategy was the hemagglutinin of the influenza A virus, the viral protein used as a vaccine against this infection. To achieve this 'molecular transplantation' of the epitope, domains located on the surface of the serum receptor protein were identified using bioinformatic-structural tools, which had a three-dimensional structure similar to that corresponding to the epitope when it is part of the native pathogenic protein. . With molecular techniques the most appropriate domain was removed and replaced by the immunogenic epitope. A mouse albumin transplanted with one of the previously selected immunogenic epitopes of the influenza A virus haemagglutinin was expressed recombinantly. Mice were immunized with the transplanted albumin and with other forms of presentation of the same epitope: chemically conjugated to the recombinant mouse albumin, mixed in solution with the recombinant albumin, and the isolated epitope, and the ability to produce anti-epitope antibodies was determined stimulated by each form of presentation of the epitope. The present study would demonstrate the ´proof of concept´ that an epitope transplanted on the surface of a serum protein could be capable of elucidating an immune response superior to that obtained by the isolated epitope or by the epitope chemically conjugated to the transporter serum protein by means of a significantly higher production of anti-epitope antibodies, which also increases over time. Likewise, after an exposure time later to the same epitope, it is possible to stimulate the production of anti-memory epitope antibodies, which suggests that the transplanted epitope in the serum transport protein would not only stimulate a greater humoral response but also memory immunity.
This item is licensed under a Creative Commons License