Citas bibligráficas
Calderon, J., Lipa, B. (2023). Diseño de una herramienta y metodología para la detección, geolocalización y clasificación de sectores interferentes para la tecnología 4G basado en Machine Learning y Redes neuronales convolucionales [Trabajo de suficiencia profesional, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/671162
Calderon, J., Lipa, B. Diseño de una herramienta y metodología para la detección, geolocalización y clasificación de sectores interferentes para la tecnología 4G basado en Machine Learning y Redes neuronales convolucionales [Trabajo de suficiencia profesional]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2023. http://hdl.handle.net/10757/671162
@misc{renati/411846,
title = "Diseño de una herramienta y metodología para la detección, geolocalización y clasificación de sectores interferentes para la tecnología 4G basado en Machine Learning y Redes neuronales convolucionales",
author = "Lipa Oscco, Benghy Junior",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2023"
}
This research work presents the design and development of a tool and methodology aimed at detecting, locating, and classifying interfering sectors in a 4G network. This project was conceived with the goal of streamlining the interference resolution process, which involves the detection of interfering signals, identifying their source based on their patterns in spectrograms, and reporting them to regulatory entities. To accomplish this, an unsupervised learning algorithm (K-means) was implemented for sector classification according to their interference severity. With this algorithm, the sectors were divided into 5 clusters (no interference, low, medium, high, and critical). Subsequently, 7000 spectrogram images of interfered sectors were labeled according to their type of interference (Radio, CATV, PIM, Repeater) to create a database. Using this database, a convolutional neural network was trained to classify spectrograms based on their type of interference, achieving an accuracy of 95%. Finally, a web tool was designed to view metrics, perform monitoring, and geolocate (using .html and .kml files) interfered sectors.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons