Look-up in Google Scholar
Full metadata record
Huapaya Camacho, Juan Ángel
Calderon Chauchi, Jose Miguel (es_PE)
Lipa Oscco, Benghy Junior (es_PE)
2024-01-13T03:27:56Z
2024-01-13T03:27:56Z
2023-11-13
http://hdl.handle.net/10757/671162
Este trabajo de investigación presenta el diseño y desarrollo de una herramienta y metodología con la función de detectar, localizar y clasificar sectores interferentes en una red 4G. Este proyecto fue planteado con el objetivo de agilizar el proceso de solución de interferencias que consiste en la detección de señales interferentes, la identificación de su origen según sus patrones en espectrogramas y su reporte a las entidades reguladoras. Para esto, se implementó un algoritmo de aprendizaje no supervisado (K-means) para la clasificación de sectores según su criticidad de interferencia. Con este algoritmo se logró dividir sectores en 5 clústeres (sin interferencia, bajo, medio, alto y critico). Luego, 7000 imágenes de espectrogramas de sectores interferidos fueron etiquetados según su tipo de interferencia (Radio, CATV, PIM, Repetidor) para crear una base de datos. Con esta, se entrenó una red neuronal convolucional que se diseñó para clasificar los espectrogramas según su tipo de interferencia, consiguiendo una precisión del 95%. Finalmente, se diseñó una herramienta web que permite ver métricas, realizar monitoreo y geolocalizar, mediante archivos .html y .kml, los sectores interferidos.
This research work presents the design and development of a tool and methodology aimed at detecting, locating, and classifying interfering sectors in a 4G network. This project was conceived with the goal of streamlining the interference resolution process, which involves the detection of interfering signals, identifying their source based on their patterns in spectrograms, and reporting them to regulatory entities. To accomplish this, an unsupervised learning algorithm (K-means) was implemented for sector classification according to their interference severity. With this algorithm, the sectors were divided into 5 clusters (no interference, low, medium, high, and critical). Subsequently, 7000 spectrogram images of interfered sectors were labeled according to their type of interference (Radio, CATV, PIM, Repeater) to create a database. Using this database, a convolutional neural network was trained to classify spectrograms based on their type of interference, achieving an accuracy of 95%. Finally, a web tool was designed to view metrics, perform monitoring, and geolocate (using .html and .kml files) interfered sectors.
Trabajo de suficiencia profesional (es_PE)
application/pdf (en_US)
application/epub (en_US)
application/msword (en_US)
spa (es_PE)
Universidad Peruana de Ciencias Aplicadas (UPC) (es_PE)
info:eu-repo/semantics/openAccess (es_PE)
http://creativecommons.org/licenses/by-nc-sa/4.0/ (*)
Universidad Peruana de Ciencias Aplicadas (UPC) (es_PE)
Repositorio Académico - UPC (es_PE)
Inteligencia artificial
k-medias
Red neuronal convolucional
4G
LTE
Interferencia
Detección
Monitoreo
Artificial inteligence
k-means
Convolutional neural network
Interference
Detection
Monitoring
Diseño de una herramienta y metodología para la detección, geolocalización y clasificación de sectores interferentes para la tecnología 4G basado en Machine Learning y Redes neuronales convolucionales (es_PE)
Design of a tool and methodology for the detection, geolocation, and classification of interfered sectors for 4G technology based on Machine Learning and Convolutional Neural Networks
info:eu-repo/semantics/bachelorThesis (es_PE)
Universidad Peruana de Ciencias Aplicadas (UPC). Facultad de Ingeniería (es_PE)
Ingeniería Electrónica (es_PE)
Licenciatura (es_PE)
Ingeniero electrónico (es_PE)
PE (es_PE)
https://purl.org/pe-repo/ocde/ford#2.02.01
https://purl.org/pe-repo/ocde/ford#2.00.00 (es_PE)
https://purl.org/pe-repo/renati/level#tituloProfesional (es_PE)
15415783
0000-0001-7700-2838 (es_PE)
73905127
72152131
712026 (es_PE)
Klusmann Vieira, Hermann Mirko
Lau Gan, Kalun Jose
https://purl.org/pe-repo/renati/type#tesis (es_PE)
Privada societaria



This item is licensed under a Creative Commons License Creative Commons