Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Sánchez, R., (2024). Existencia de solución débil para un problema parabólico no lineal con derivadas fraccionarias [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/22621
Sánchez, R., Existencia de solución débil para un problema parabólico no lineal con derivadas fraccionarias []. PE: Universidad Nacional de Trujillo; 2024. https://hdl.handle.net/20.500.14414/22621
@phdthesis{renati/1045132,
title = "Existencia de solución débil para un problema parabólico no lineal con derivadas fraccionarias",
author = "Sánchez Ancajima, Raúl Alfredo",
publisher = "Universidad Nacional de Trujillo",
year = "2024"
}
Title: Existencia de solución débil para un problema parabólico no lineal con derivadas fraccionarias
Authors(s): Sánchez Ancajima, Raúl Alfredo
Advisor(s): Maco Vásquez, Wilson Arcenio
Keywords: Cálculo fraccionario; Variedad de Nehari; Operador de fibrado; Solución débil; Derivada fraccionaria
OCDE field: https://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 2024
Institution: Universidad Nacional de Trujillo
Abstract: La presente investigaci´on tiene como objetivo principal demostrar existencia de soluci´on d´ebil
para un problema parab´olico no lineal con derivadas fraccionarias para las variables espacial
y temporal sobre un dominio de dimensi´on uno. Usando el m´etodo de Variedad de Nehari y
su relaci´on con la Funci´on de fibrado se demostr´o la existencia de soluci´on d´ebil para el caso
estacionario. Finalmente usando el Teorema Azela-Ascoli y Teorema de punto fijo de Banach
se demostr´o existencia y unicidad de soluci´on d´ebil para el problema parab´olico no lineal.
The main objective of the present investigation is to demonstrate the existence of a weak solution for a nonlinear parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the Nehari Manifold method and its relationship with the Fibering Maps, the existence of a weak solution for the stationary case was demonstrated. Finally, using the Azela-Ascoli Theorem and Banach’s Fixed Point Theorem, the existence and uniqueness of a weak solution for the non-linear parabolic problem were shown.
The main objective of the present investigation is to demonstrate the existence of a weak solution for a nonlinear parabolic problem with fractional derivatives for the spatial and temporal variables on a one-dimensional domain. Using the Nehari Manifold method and its relationship with the Fibering Maps, the existence of a weak solution for the stationary case was demonstrated. Finally, using the Azela-Ascoli Theorem and Banach’s Fixed Point Theorem, the existence and uniqueness of a weak solution for the non-linear parabolic problem were shown.
Link to repository: https://hdl.handle.net/20.500.14414/22621
Discipline: Doctorado en Matemática
Grade or title grantor: Universidad Nacional de Trujillo. Escuela de Posgrado
Grade or title: Doctor en Matemática
Juror: Mendez Cruz, Gilberto Amado; Torres Ledesma, César Enrique; Maco Vásquez, Wilson Arcenio
Register date: 23-Oct-2024
This item is licensed under a Creative Commons License