Buscar en Google Scholar
Título: Uso de inteligencia artificial para el diagnóstico de Covid-19 a través de radiografía de tórax en el Hospital Nacional Adolfo Guevara Velasco, Hospital Regional y Hospital Antonio Lorena, Cusco-Perú, periodo 2020-2021
Asesor(es): Flores Revilla, Erick Gustavo
Campo OCDE: https://purl.org/pe-repo/ocde/ford#3.02.27
Fecha de publicación: 17-ago-2022
Institución: Universidad Andina del Cusco
Resumen: Hoy en día se ha encontrado grandes avances en las técnicas diagnósticas de aprendizaje profundo aplicado a imágenes, lo cual supone un nuevo punto de acceso al diagnóstico. El objetivo de la siguiente tesis propone una nueva prueba diagnóstica basada en el uso de aprendizaje automático aplicado a radiografías de tórax para hacer el diagnóstico de COVID-19, para lo cual se recolectó datos de las historias clínicas y radiografías de tórax del Hospital Regional del Cusco, Adolfo Guevara Velasco y Antonio Lorena en periodo 2020 a 2021 para los casos COVID-19 y periodo 2019 para los casos no COVID.19. Esto nos permitió evaluar la sensibilidad de la clasificación e imágenes de radiografía de tórax mediante el aprendizaje automático al ser comparada frente al estándar de oro para diagnóstico de COVID-19 la prueba de RT-PCR y prueba antigénica. El diagnóstico de COVID-19 por IA logró una sensibilidad de 90.13%, especificidad de 80.91%, valor predictivo positivo de 70.24%, valor predictivo negativo de 94.25% y una precisión de 83.98%. Convirtiéndola en una herramienta adecuada para el diagnóstico de COVID-19.

Nowadays, great advances have been found in deep learning diagnostic techniques applied to images, which stands for a new point of access to diagnosis. The objective of the following thesis proposes a new diagnostic test based on the use of machine learning applied to chest X-rays to make the diagnosis of COVID-19, for which data was collected from the medical records and chest X-rays of the Hospital Regional del Cusco, Adolfo Guevara Velasco and Antonio Lorena in the 2020 to 2021 period for COVID-19 cases and the 2019 period for non-COVID-19 cases. This allowed us to assess the sensitivity of machine learning chest x-ray imaging and classification when compared to the gold standard for COVID-19 diagnosis, RT-PCR and antigen testing. The diagnosis of COVID-19 by AI achieved a sensitivity of 90.13%, a specificity of 80.91%, a positive predictive value of 70.24%, a negative predictive value of 94.25%, and an accuracy of 83.98%. Making it a suitable tool for the diagnosis of COVID-19. Keywords: COVID-19, chest radiograph, artificial intelligence, machine learning, image classification, diagnostic test.
Disciplina académico-profesional: Medicina Humana
Institución que otorga el grado o título: Universidad Andina del Cusco. Facultad de Ciencias de la Salud
Grado o título: Médico Cirujano
Jurado: Naveda De Aramburu, Herminia; Sarmiento Herrera, William Senen; Villagarcia Zereceda, Hugo Rommel; Rojas Marroquin, Juan Carlos
Fecha de registro: 25-ago-2022



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons