Citas bibligráficas
Luna, P., Vargas, S. (2022). Uso de inteligencia artificial para el diagnóstico de Covid-19 a través de radiografía de tórax en el Hospital Nacional Adolfo Guevara Velasco, Hospital Regional y Hospital Antonio Lorena, Cusco-Perú, periodo 2020-2021 [Universidad Andina del Cusco]. https://hdl.handle.net/20.500.12557/4802
Luna, P., Vargas, S. Uso de inteligencia artificial para el diagnóstico de Covid-19 a través de radiografía de tórax en el Hospital Nacional Adolfo Guevara Velasco, Hospital Regional y Hospital Antonio Lorena, Cusco-Perú, periodo 2020-2021 []. PE: Universidad Andina del Cusco; 2022. https://hdl.handle.net/20.500.12557/4802
@misc{renati/959184,
title = "Uso de inteligencia artificial para el diagnóstico de Covid-19 a través de radiografía de tórax en el Hospital Nacional Adolfo Guevara Velasco, Hospital Regional y Hospital Antonio Lorena, Cusco-Perú, periodo 2020-2021",
author = "Vargas Quisca, Sharon Angelica",
publisher = "Universidad Andina del Cusco",
year = "2022"
}
Nowadays, great advances have been found in deep learning diagnostic techniques applied to images, which stands for a new point of access to diagnosis. The objective of the following thesis proposes a new diagnostic test based on the use of machine learning applied to chest X-rays to make the diagnosis of COVID-19, for which data was collected from the medical records and chest X-rays of the Hospital Regional del Cusco, Adolfo Guevara Velasco and Antonio Lorena in the 2020 to 2021 period for COVID-19 cases and the 2019 period for non-COVID-19 cases. This allowed us to assess the sensitivity of machine learning chest x-ray imaging and classification when compared to the gold standard for COVID-19 diagnosis, RT-PCR and antigen testing. The diagnosis of COVID-19 by AI achieved a sensitivity of 90.13%, a specificity of 80.91%, a positive predictive value of 70.24%, a negative predictive value of 94.25%, and an accuracy of 83.98%. Making it a suitable tool for the diagnosis of COVID-19. Keywords: COVID-19, chest radiograph, artificial intelligence, machine learning, image classification, diagnostic test.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons