Buscar en Google Scholar
Título: Predicción del caudal del río Torata utilizando algoritmos de Machine Learning para el aprovisionamiento de agua a la población del distrito
Asesor(es): Fabian Arteaga, Junior John
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.11.04; https://purl.org/pe-repo/ocde/ford#5.02.04
Fecha de publicación: 2024
Institución: Universidad ESAN
Resumen: Diferentes estudios utilizan el aprendizaje automático para el análisis de datos y por ende construir modelos predictivos y encontrar comportamientos que representen diversas variables de salida. Basado en ello, el presente trabajo de suficiencia profesional tiene como misión principal desarrollar un modelo para predecir el caudal del río Torata utilizando algoritmos de Machine Learning y con ello estimar la oferta hídrica, además se busca brindar un marco amplio a las autoridades en la toma de medidas proactivas para garantizar un adecuado aprovisionamiento de agua a la población, incluyendo la administración de infraestructuras de almacenamiento, división y tratamiento. Utilizando datos históricos de las estaciones hidrométricas y meteorológicas del río Torata monitoreados y proporcionadas por la Mina Cuajone y técnicas de Machine Learning, se desarrollaron modelos predictivos para brindar un aporte eficaz al proyecto de aprovisionamiento de agua (Presa Altarani). La investigación se estructura en seis capítulos que abarcan desde el planteamiento del problema y metodología, dando como resultado el mejor modelo de predicción SVR lineal con un 𝑅2de 0.946 y un MSE de 0.041, hasta la presentación de conclusiones y una proyección de 5 años del caudal y oferta hídrica del río Torata con R𝟐 de 0.877 y MSE de 0.123.
Disciplina académico-profesional: Ingeniería Industrial y Comercial; Ingeniería en Gestión Ambiental; Ingeniería de Tecnologías de Información y Sistemas
Institución que otorga el grado o título: Universidad ESAN. Facultad de Ingeniería
Grado o título: Ingeniero Industrial y Comercial; Ingeniero en Gestión Ambiental; Ingeniero de Tecnologías de Información y Sistemas
Jurado: Lizarzaburu Bolaños, Edmundo; Ballon Alvarez, Joseph
Fecha de registro: 9-jun-2024



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons