Buscar en Google Scholar
Título: Predicción de los valores de la demanda máxima de energía eléctrica empleando técnicas de machine learning para la empresa Nexa Resources – Cajamarquilla
Asesor(es): Fabian Arteaga, Junior John
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.11.04; https://purl.org/pe-repo/ocde/ford#5.02.04
Fecha de publicación: 2022
Institución: Universidad ESAN
Resumen: Nexa Resources Cajamarquilla es una empresa dedicada a la extracción, tratamiento y transformación de metales. Actualmente, el precio de metales eco amigables viene en aumento debido a las restricciones en el transporte marítimo de combustibles desde Rusia, por lo que se han incrementado los costos de petróleo, gasolina y otros. Las operaciones de las empresas que dependen de energía eléctrica generada por estos combustibles ha aumentado, es en este sentido que se ha propuesto disminuir su consumo de energía eléctrica aplicando herramientas de Machine Learning para pronosticar sus puntos máximos de demanda de energía y poder dosificar su producción. En el presente estudio se aplicó una metodología basada en una estructura cuantitativa relacionando de dos a más variables con un diseño experimental, la variable dependiente y a predecir es el consumo de energía la cual dependerá de periodos de tiempo y tipo de días de la semana (festivo, laborables). Finalmente, los resultados nos ayudaron a elaborar un modelo matemático que nos ayuda a conocer el comportamiento de la demanda de energía; por lo tanto, se pueden anticipar los consumos máximos y de esta manera dosificar su uso para reducir costos y efectos secundarios en los procesos de producción.
Disciplina académico-profesional: Ingeniería Industrial y Comercial
Institución que otorga el grado o título: Universidad ESAN. Facultad de Ingeniería
Grado o título: Ingeniero Industrial y Comercial
Jurado: Lizarzaburu Bolaños, Edmundo Raúl Antonio; Gonzales Lopez, Rolando Alberto
Fecha de registro: 10-nov-2022



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons