Citas bibligráficas
Alvarado, P., Centeno, C., Saavedra, D. (2022). Modelo predictivo de clasificación de pagos Fraudulentos para el área de prevención del fraude del Banco de Lima Metropolitana [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/669754
Alvarado, P., Centeno, C., Saavedra, D. Modelo predictivo de clasificación de pagos Fraudulentos para el área de prevención del fraude del Banco de Lima Metropolitana [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2022. http://hdl.handle.net/10757/669754
@mastersthesis{renati/952234,
title = "Modelo predictivo de clasificación de pagos Fraudulentos para el área de prevención del fraude del Banco de Lima Metropolitana",
author = "Saavedra Macedo, Diego Antonio ",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2022"
}
This thesis shows the application of IBM's Fundamental Data Science Methodology in conjunction with the SCRUM framework to be able to Analyze, model and implement a predictive model that allows assigning probabilities to bank transactions and establishing which ones are probably fraudulent. For this purpose, the best model will be identified after executing the cross-validation with Kfold equal to 10 and calculating the Area under the Precision and Completeness curve (AUC-PR) and Lift indicators, since we are facing a data problem. unbalanced where fraudulent transactions represent 0.13% and non-fraudulent 99.87%. As a result, the best Gradient Boosting Classifier model is obtained, from which the results were obtained with an Area under the Precision and Completeness curve (AUC-PR) of 0.036 and Lift of 3.629%; These indicators will allow the Bank's Fraud Prevention office to establish an alert margin and take action when transactions are identified as fraudulent.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons