Bibliographic citations
Cañari, J., (2023). Dengue severo y/o dengue con señales de alarma asociado a la circulación de serotipos y su implicancia en la renuencia al control vectorial del Ae. Aegypti en los hogares [Universidad Peruana Cayetano Heredia]. https://hdl.handle.net/20.500.12866/14889
Cañari, J., Dengue severo y/o dengue con señales de alarma asociado a la circulación de serotipos y su implicancia en la renuencia al control vectorial del Ae. Aegypti en los hogares []. PE: Universidad Peruana Cayetano Heredia; 2023. https://hdl.handle.net/20.500.12866/14889
@phdthesis{renati/911037,
title = "Dengue severo y/o dengue con señales de alarma asociado a la circulación de serotipos y su implicancia en la renuencia al control vectorial del Ae. Aegypti en los hogares",
author = "Cañari Casaño, Jorge Luis",
publisher = "Universidad Peruana Cayetano Heredia",
year = "2023"
}
Introduction: Dengue is an endemic public health problem in Peru and other tropical countries. At the individual level, it is known that severe dengue is associated with a second infection or with differences in the virulence of the serotypes. However, the factors that increase the risk of severe dengue at the population level are still unknown. Therefore, in the first study, secondary data was used to estimate the population at risk of second infections and to later explore its association with the incidence of severe dengue or dengue with alarm signs (DS-DCSA). The association of the incidence of DS-DCSA with other predictors such as the circulation of serotypes, the total number of first-level care establishments, and the socioeconomic conditions of the region was also explored. In addition, since there is no effective vaccine against dengue for the general population, the main prevention strategy is vector control activities for Ae. Aegypti in homes (fumigation, focal treatment, and collection from breeding sites). However, hesitancy to these activities has been observed. In the second study, the association between hesitancy to each of the vector control activities and close experience with DS-DCSA was explored, as well as its relationship with other potential predictors. Research Question 1: Is a higher estimated number of people at risk of a second infection associated with a higher risk in the cumulative incidence of DS-DCSA? Methods: It is an ecological, observational, analytical, longitudinal, and retrospective study. Analysis of secondary databases of dengue cases and identification of serotype types in samples analyzed by the Ministry of Health was carried out. A mixed negative binomial regression model for repeated measures over time was used to estimate the association between the cumulative incidence of DS-DCSA per 100,000 inhabitants and the estimated population at risk of second infections, as well as other factors potentially associated with the outcome. Data from 13 years (2007-2019) for 19 regions of Peru were analyzed. Crude and adjusted incidence ratios (IRRs) were estimated using the “menbreg” command in Stata. To estimate the association of interest, adjustment variables such as the poverty index, the total number of primary care facilities, and circulating serotype types (or combinations of serotypes) were considered. Results: In total, 13 years of data were analyzed from 2007 to 2019 in 19 regions of Peru, making a total of 247 region years. The data of about 40 thousand samples analyzed for serotype identification were analyzed, of which 58.5% of the data corresponded to the DENV-2 serotype, 27.0% to DENV-1, 10.2% to DENV-3 and only 4.3% to DENV-4. Regarding the dengue cases analyzed, 86.4% corresponded to dengue without alarm signs, 13.2% to dengue with alarm signs, and 0.5% to severe dengue. The 4 regions with the highest incidence of DS-DCSA and with the highest identification of serotype types were Loreto, Piura, Madre de Dios, and Ucayali. No significant association was found between the estimated population at risk of second infections and the cumulative incidence of DS-DCSA per 100,000 inhabitants (IRRa 1.00, CI 1.00-1.01). However, multiple circulations where the DENV-2 serotype was present were associated with a higher risk of cumulative incidence of DS-DCSA per 100,000 inhabitants (DENV-123: IRRa 6.62 IC 2.19 – 20.01; DENV-23: IRRa 3.87 CI 1.26 – 11.85). Research question 2: Is there an association between close experience with DS-DCSA and hesitancy to vector control in households? Methods: It is a cross- sectional study via a survey of residents with probabilistic sampling in dengue-endemic districts of Piura (La Unión, Chulucanas, and La Matanza) and Loreto (Iquitos and Punchana). Crude and adjusted prevalence ratios (PR) were estimated using the ordinal logistic regression model between close experience with DS-DCSA and levels of hesitancy (not hesitancy, sometimes hesitancy, and always hesitancy) to each of the vector control activities in households using predefined confounding variables. Results: 883 surveys were applied. Only 15% of the study population had close experience with DS-DCSA and higher levels of hesitancy (always hesitancy and sometimes hesitancy) to the activity of collecting from breeding sites (54%), followed by fumigation (20% ); the focal treatment had a lower level of hesitancy (7%). In the adjusted regression model, no association was found between the close experience with DS-DCSA and each of the vector control activities; however, the variable that best explained the levels of hesitancy was the perception of the effectiveness of the product or intervention. Perceiving that the product used in fumigation/focal treatment is effective was associated with having less risk of being hesitancy to these activities (RPa 0.31 IC 0.17-0.0.56 for fumigation; RPa 0.23 IC 0.10-0.54 for focal treatment). In the same way, having a perception that the collection from hatcheries works was associated with a lower risk of being hesitancy to this activity (RPa 0.32 IC 0.17-0.60). Conclusions: The circulation of the DENV-2 serotype or its combination was associated with higher average incidence rates of DS-DCSA. On the other hand, efficiently demonstrating the effectiveness of vector control activities can decrease population hesitancy.
This item is licensed under a Creative Commons License