Buscar en Google Scholar
Título: Modelos predictivos para determinar la calidad de harina de pescado a partir de características de la materia prima
Asesor(es): Siche Jara, Raúl Benito
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.11.00
Fecha de publicación: 2017
Institución: Universidad Nacional de Trujillo
Resumen: El procesamiento de harina de pescado está basado en una tecnología que se ha desarrollado, con un considerable progreso e innovaciones en los últimos años. Cada producción está sujeta a una serie de procesos de regulación y control para asegurar su integridad desde la captura del pescado hasta la puesta en el mercado del producto final. El presente trabajo se basó en la obtención de modelos matemáticos que permitan pronosticar cada uno de los factores que influyen en la calidad de harina de pescado en función de las características con las que ingresa la materia prima con el fin de optimizar los tiempos necesarios para la toma de decisiones para cada una de las fases del proceso. Para esto definió cuáles son las características principales que influyen durante el proceso y en que métodos utilizaremos para determinar su valor. De la misma forma se hizo con los factores que determinan la calidad de harina de pescado. Con los datos correspondientes se procedió a utilizar el software DataFit 2.0 para obtener modelos matemáticos que se ajusten en lo posible a la realidad. El modelo escogido para el contenido graso (%Grasa) fue el modelo lineal con intersección que presentó un coeficiente de determinación (R²) igual a 0.9523, suma de residuales igual a 0, valor del Test de Durbin-Watson igual a 1.8547 y un valor de significancia de 9.708E-07. El modelo escogido para el contenido total de nitrógeno volátil (%TBVN) fue el modelo lineal con intersección que presentó un coeficiente de determinación (R²) igual a 0.9735, suma de residuales igual a 3.2685E-13, el valor del Test de Durbin-Watson igual a 1.81 y un valor de significancia de 3.729E-21. Al someter estos modelos a validación en función de su desviación estándar, se concluyó que su capacidad predictiva es excelente.

ABSTRACT The fishmeal processing is based on technology that has been developed, with considerable progress and innovations in recent years. Each production has a number of processes of regulation and control, to ensure its integrity from catching fish to the placing on the market of the final product. This work was based on obtaining mathematical models that predict each of the factors influencing the quality of fishmeal depending on the features that entering the raw material, in order to optimize the time needed for decision making for each of the stages. It defined what are the main characteristics that influence during the process and what methods we will use to determine its value. The factors that determine the quality of fish meal were obtained. With the data we proceeded to use the DataFit 2.0 software for mathematical models that conform as much as possible to reality. The model chosen for the fat content (% Fat) was the linear model with intercept presented a coefficient of determination (R2) equal to 0.9523, amount of residual equal to 0, the value of the Durbin-Watson test is equal to 1.8547 and a significance value 9.708x10-07. The model chosen for the total content of volatile nitrogen (% TBVN) was the linear model with intersection which has a coefficient of determination (R2) equal to 0.9735, residual sum equal to 3.2685x10-13, the value of Durbin Watson Test equal to 1.81 and a significance value 3.729x10-21. By subjecting these models to validation based on the standard deviation, it was concluded that its predictive ability is excellent.
Disciplina académico-profesional: Ingeniería Agroindustrial
Institución que otorga el grado o título: Universidad Nacional de Trujillo. Facultad de Ciencias Agropecuarias
Grado o título: Ingeniero Agroindustrial
Jurado: Ascón Dionicio, Gregorio Mayer; Ninaquispe Zare, Viviano Paulino; Siche Jara, Raúl Benito
Fecha de registro: 31-jul-2024



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons