Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Gutiérrez, F., (2017). Un modelo de optimización difusa para el problema de atraque de barcos [Tesis, Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/8931
Gutiérrez, F., Un modelo de optimización difusa para el problema de atraque de barcos [Tesis]. : Universidad Nacional de Trujillo; 2017. https://hdl.handle.net/20.500.14414/8931
@phdthesis{renati/883688,
title = "Un modelo de optimización difusa para el problema de atraque de barcos",
author = "Gutiérrez Segura, Flabio Alfonso",
publisher = "Universidad Nacional de Trujillo",
year = "2017"
}
Título: Un modelo de optimización difusa para el problema de atraque de barcos
Autor(es): Gutiérrez Segura, Flabio Alfonso
Asesor(es): Vergara Moreno, Edmundo
Palabras clave: Atraque de barcos, Programación matemática difusa
Fecha de publicación: jul-2017
Institución: Universidad Nacional de Trujillo
Resumen: El problema de asignaci n de atraques (BAP) "Berth Allocation Problem" en un terminal mar timo de contenedores (TMC) se de ne como la asignaci n factible de atraques a los barcos entrantes. Diversos factores de incertidumbre afectan para lograr planes de atraque que optimicen el uso del muelle. En esta tesis se desarroll dos modelos de programaci n matemÆtica difusa para el BAP cont nuo y dinÆmico. Se asumi que el tiempo de llegada de los barcos es impreciso, es decir, que los barcos pueden adelantarse o retrasarse hasta una tolerancia permitida. La imprecisi n se represent con nœmeros difusos triangulares. Se utilizo mØtodos de soluci n que transforman un modelo de programaci n matemÆtica difusa en un modelo auxiliar de programaci n matemÆtica clÆsica. Los modelos fueron programados en CPLEX y evaluados en diferentes instancias. El primer modelo, para cada grado de imprecisi n en la llegada de los barcos, proporciona un plan de atraque que otorga holguras de tiempo para soportar los posibles adelantos y retrasos. El segundo modelo, proporciona un solo plan de atraque robusto, que soportan posibles adelantos y retrasos de los barcos. Los resultados muestran que los modelos propuestos pueden ayudar a los administradores de un TMC, pues, tienen a su disposici n planes de atraque optimizados respecto al tiempo de espera de los barcos, que soportan la imprecisi n en la llegada de los barcos.
Enlace al repositorio: https://hdl.handle.net/20.500.14414/8931
Nota: The berth allocation problem (BAP) in a maritime container terminal is de ned as a feasible allocation of berths to incoming vessels. Several factors of uncertainty a ect to obtain berthing plans that optimize the use of the quay. In this thesis two models of fuzzy mathematical programming were developed for continuous and dynamic BAP. It was assumed that the time of arrival of the vessels is imprecise, in the sense that the vessels can be advanced or delayed to a tolerance allowed. The imprecision in the arrival of the veseels was represented by di use triangular numbers. We used solution methods that transform a fuzzy mathematical programming model into an auxiliary model of classical mathematical programming.The mathematical models were programmed in CPLEX and evaluated in di erent instances.The rst model, for each degree of imprecision in the arrival of vessels, provides a berthing plan that gives time slacks to support the possible advances and delays of the vessels. The second model, provides a single robust berthing plan, which support possible advances and delays of vessels. The results obtained show that the proposed models can help the managers of a TMC, as they have at their disposal optimized berthing plans regarding the waiting time of the vessels, which support the imprecision in the arrival of the vessels.
Disciplina académico-profesional: Doctorado en Matemáticas
Institución que otorga el grado o título: Universidad Nacional de Trujillo.Escuela de Posgrado
Grado o título: Doctor en Matemáticas
Fecha de registro: 16-oct-2017
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons