Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Reyes, P., (2024). Variedades inerciales para una ecuación diferencial parcial en espacios de Sobolev con peso [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/22169
Reyes, P., Variedades inerciales para una ecuación diferencial parcial en espacios de Sobolev con peso []. PE: Universidad Nacional de Trujillo; 2024. https://hdl.handle.net/20.500.14414/22169
@phdthesis{renati/881151,
title = "Variedades inerciales para una ecuación diferencial parcial en espacios de Sobolev con peso",
author = "Reyes Carrera, Pedro Gustavo",
publisher = "Universidad Nacional de Trujillo",
year = "2024"
}
Título: Variedades inerciales para una ecuación diferencial parcial en espacios de Sobolev con peso
Autor(es): Reyes Carrera, Pedro Gustavo
Asesor(es): Cortez Gutiérrez, Milton Milciades
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 2024
Institución: Universidad Nacional de Trujillo
Resumen: En elpresentetrabajo,sedemuestralaexistenciadeunavariedadinercialparauna
ecuaci´on diferencialparcialenespaciodeSobolevconpeso.Seusaronresultadosdelan´alisis
funcional enespaciosdeHilbertconoperadoresautoadjuntosnoacotados;analiz´andose la
ecuaci´on diferencialparcial,
𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0, (1)
siendo 𝐴 un operadorpositivonoacotadoautoadjuntoydisipativoenunespaciodeSobolev
con pesoen 𝐻, 𝐹 es elt´erminonolinealconlapropiedaddeLipschitzlocaleneldominiode
𝐷(𝐴) = 𝐻. Alrealizarelan´alisis delaecuaci´on (1)seobtuvieronlossiguientesresultados:
i) Para 𝜆 una barreraespectraldelaecuaci´on (1)talque 𝜆 >𝜆0, paraalg´un 𝜆0 y 𝑃𝜆𝐻
de dimensi´on finitaseconcluyequeGr(𝑄) = {𝑢 + 𝑄(𝑢) : 𝑢 ∈ 𝑃𝜆𝐻} es unavariedad
Lipschitzianadedimensi´on finitasatisfaciendolassiguientespropiedades:
a) Gr(𝑄) es invarianteparaelsemigrupo {𝑆(𝑡)}𝑡≥0.
b) Gr(𝑄) atrae exponencialmentetodaslas ´orbitas delaecuaci´on deevoluci´on (1).
ii) Si 𝜆 ∉ 𝜎(𝐴), setieneunavariedadinercialparalaecuaci´on deevoluci´on nolineal
𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0.
Finalmenteseconcluyeque:Si 𝜆 es unabarreraespectralpara(1)talque 𝜆 >𝜆0,
𝑃𝜆𝐻 es dedimensi´on finitay 𝜆 ∉ 𝜎(𝐴), entonces,lafunci´on Gr(𝑄) es unavariedadinercial
para (1).
In thepresentwork,theexistenceofaninertialmanifoldisdemonstratedfora partialdifferentialequationinSobolevspacewithweight.Themethodologyoffunctional analysisinHilbertspacewithunboundedself-adjointoperatorswasused;analyzingthe partialdifferentialequation 𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0, (1) where 𝐴 is aself-adjointanddissipativeunboundedpositiveoperatoronaSobolevspace with weighton 𝐻, 𝐹 is thenonlineartermwiththelocalLipschitzpropertyinthedomainof 𝐷(𝐴) = 𝐻. Whenperformingtheanalysisofequation(1)thefollowingresultswereobtained: i) For 𝜆 spectral barrierofequation(1)suchthat 𝜆 >𝜆0, forsome 𝜆0 and 𝑃𝜆𝐻 of finite dimension itfollowsthatGr(𝑄) = {𝑢 + 𝑄(𝑢) : 𝑢 ∈ 𝑃𝜆𝐻} is afinite-dimensional Lipschitzianmanifoldsatisfyingthefollowingproperties: a) Gr(𝑄) is invariantforthesemigroup {𝑆(𝑡)}𝑡≥0. b) Gr(𝑄) exponentiallyattractsalltheorbitsoftheevolutionequation(1). ii) If 𝜆 ∉ 𝜎(𝐴), wehaveaninertialmanifoldforthenonlinearevolutionequation 𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0. Finallyitisconcludedthat:Let 𝜆 be aspectralbarrierfor(1)suchthat 𝜆 >𝜆0, 𝑃𝜆𝐻 is offinitedimensionand 𝜆 ∉ 𝜎(𝐴). Then,thefunctionGr(𝑄) is aninertialmanifoldfor(1).
In thepresentwork,theexistenceofaninertialmanifoldisdemonstratedfora partialdifferentialequationinSobolevspacewithweight.Themethodologyoffunctional analysisinHilbertspacewithunboundedself-adjointoperatorswasused;analyzingthe partialdifferentialequation 𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0, (1) where 𝐴 is aself-adjointanddissipativeunboundedpositiveoperatoronaSobolevspace with weighton 𝐻, 𝐹 is thenonlineartermwiththelocalLipschitzpropertyinthedomainof 𝐷(𝐴) = 𝐻. Whenperformingtheanalysisofequation(1)thefollowingresultswereobtained: i) For 𝜆 spectral barrierofequation(1)suchthat 𝜆 >𝜆0, forsome 𝜆0 and 𝑃𝜆𝐻 of finite dimension itfollowsthatGr(𝑄) = {𝑢 + 𝑄(𝑢) : 𝑢 ∈ 𝑃𝜆𝐻} is afinite-dimensional Lipschitzianmanifoldsatisfyingthefollowingproperties: a) Gr(𝑄) is invariantforthesemigroup {𝑆(𝑡)}𝑡≥0. b) Gr(𝑄) exponentiallyattractsalltheorbitsoftheevolutionequation(1). ii) If 𝜆 ∉ 𝜎(𝐴), wehaveaninertialmanifoldforthenonlinearevolutionequation 𝑢𝑡 + 𝐴𝑢 + 𝐹(𝑢) = 0. Finallyitisconcludedthat:Let 𝜆 be aspectralbarrierfor(1)suchthat 𝜆 >𝜆0, 𝑃𝜆𝐻 is offinitedimensionand 𝜆 ∉ 𝜎(𝐴). Then,thefunctionGr(𝑄) is aninertialmanifoldfor(1).
Enlace al repositorio: https://hdl.handle.net/20.500.14414/22169
Disciplina académico-profesional: Doctorado en Matemática
Institución que otorga el grado o título: Universidad Nacional de Trujillo. Escuela de Posgrado
Grado o título: Doctora en Matemática
Jurado: Díaz Leiva, José Levi; Cuti Gutiérrez, Hernán Arquímides; Montalvo Bonilla, Manuel Cosme; Cortez Gutiérrez, Milton Milciades
Fecha de registro: 5-sep-2024
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons