Citas bibligráficas
Portilla, C., (2024). Estudio experimental y computacional por DFT de propiedades estructurales, ópticas y magnéticas de nanopartículas de Fe3O4 y CoFe2O4 sintetizadas por co-precipitación [Universidad Nacional de Trujillo]. https://hdl.handle.net/20.500.14414/22495
Portilla, C., Estudio experimental y computacional por DFT de propiedades estructurales, ópticas y magnéticas de nanopartículas de Fe3O4 y CoFe2O4 sintetizadas por co-precipitación []. PE: Universidad Nacional de Trujillo; 2024. https://hdl.handle.net/20.500.14414/22495
@misc{renati/879131,
title = "Estudio experimental y computacional por DFT de propiedades estructurales, ópticas y magnéticas de nanopartículas de Fe3O4 y CoFe2O4 sintetizadas por co-precipitación",
author = "Portilla Liberato, Christian Arturo",
publisher = "Universidad Nacional de Trujillo",
year = "2024"
}
Abstract A computational study was conducted using density functional theory (DFT) simulations on the structures of Fe 3O4 and CoFe2O4. Themagnetic and cationic ground states of both compounds were found to be antiferromagnetic with a dispersed cationic distribution.The study of the electronic structure revealed the representative optical transitions of majority and minority electrons, determining the half-metallic behavior of Fe3O4 and the semiconductor behavior of CoFe2O4. Additionally, phonon calculations identified the main modes and vibrational regions of each material. An experimental study was also carried out on the structural, optical, and magnetic properties of Fe3O4 and CoFe2O4 nanoparticles synthesized via theco-precipitation method at different reaction times (0,15,30,and 45 minutes). The structural properties were characterized using X ray diffraction, dynamic light scattering, scanning electron microscopy, Fourier-transform infrared spectroscopy, and Raman spectroscopy. Optical properties were analyzed through diffuse reflectance spectroscopy, and magnetic properties were examined using vibrating sample magnetometry. It was determined that nanoparticle size increased with reaction time, with superparamagnetism observed in the Fe3O4 nanoparticles. Furthermore, the optimal reaction time for biomedical applications was established to be 30 minutes.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons