Buscar en Google Scholar
Título: Exploración visual basada en similitud de grandes conjuntos de datos multidimensionales georreferenciados
Asesor(es): Gomez Nieto, Erick
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.01
Fecha de publicación: 2019
Institución: Universidad Católica San Pablo
Resumen: La visualización de grandes cantidades de datos es una de las principales tareas que realiza un analista de datos. En sistemas tradicionales de manejo de datos, registros de enormes conjuntos de datos no pueden ser consultados por su similitud debido a su complejidad, en términos de volumen y multiplicidad. En esta tesis, proponemos un enfoque efectivo para la indexación de millones de elementos, con el propósito de ejecutar simples y múltiples consultas visuales de similitud sobre datos multidimensionales asociadas a una ubicación geográfica. Nuestro enfoque hace uso del método Z-order curve para mapear nuestro conjunto de datos en una alta dimensionalidad a un espacio de una dimensión considerando la similitud entre los datos. Respaldamos nuestra propuesta mediante la comparación con otros métodos del estado del arte en la literatura, utilizando métricas de preservación de vecindad y analizando las ventajas y desventajas entre estos métodos. Adicionalmente, presentamos un conjunto de resultados usando datos reales de diversas fuentes y analizamos los conocimientos obtenidos a partir de su exploración interactiva.
Disciplina académico-profesional: Ciencia de la Computación
Institución que otorga el grado o título: Universidad Católica San Pablo. Facultad de Ingeniería y Computación
Grado o título: Maestro en Ciencia de la Computación
Fecha de registro: 12-jun-2019



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons