Buscar en Google Scholar
Título: Mejorando el proceso de transferencia de estilo neuronal en imágenes añadiendo mid-level representation
Asesor(es): Ochoa Luna, Jose Eduardo
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.01
Fecha de publicación: 2020
Institución: Universidad Católica San Pablo
Resumen: En los últimos años se ha demostrado el poder que tienen las Redes Neuronales para la creación de imágenes artísticas mediante la separación y posterior recombinación del estilo y contenido de dos distintas imágenes. A este proceso se le conoce como transferencia de estilo neuronal, y es un tópico que está recibiendo interés, tanto de la comunidad académica como de la industria. En este trabajo se aborda el enfoque basado en la optimización de imágenes que nos permite trabajar con estilos artísticos arbitrariamente; sin embargo, es un proceso con un costo computacional significativo. Debido a esto, se ha propuesto modificaciones que permitan realizar la transferencia de estilo neuronal con un menor coste computacional, y añadiendo también un indicador de similitud que determina si la imagen sintetizada ha logrado obtener el estilo deseado utilizando mid-level representación. Estas modificaciones, han dado mejores resultados visuales, además el tiempo de ejecución que demora en hacer una iteración ha mejorado hasta en 1.53⇥ veces frente a otros métodos y con el indicador de la similitud se ha logrado reducir el número de iteraciones necesarias para obtener la imagen estilizada.
Disciplina académico-profesional: Ciencia de la Computación
Institución que otorga el grado o título: Universidad Católica San Pablo. Facultad de Ingeniería y Computación
Grado o título: Licenciado en Ciencia de la Computación
Fecha de registro: 2-mar-2020



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons