Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Heredia, J., (2021). An automatic emotion recognition system that uses the human body posture [Trabajo de investigación, Universidad Católica San Pablo]. https://hdl.handle.net/20.500.12590/16702
Heredia, J., An automatic emotion recognition system that uses the human body posture [Trabajo de investigación]. PE: Universidad Católica San Pablo; 2021. https://hdl.handle.net/20.500.12590/16702
@misc{renati/782277,
title = "An automatic emotion recognition system that uses the human body posture",
author = "Heredia Parillo, Juanpablo Andrew",
publisher = "Universidad Católica San Pablo",
year = "2021"
}
Título: An automatic emotion recognition system that uses the human body posture
Autor(es): Heredia Parillo, Juanpablo Andrew
Asesor(es): Ticona Herrera, Regina Paola
Palabras clave: Emotion recognition; Posture Classification; Meta-learning
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.01
Fecha de publicación: 2021
Institución: Universidad Católica San Pablo
Resumen: Non-verbal communication is very present in our lives, but it can be interpreted in different ways according to many factors. With nonverbal gestures people can express explicit and implicit messages, which makes them important to understand. Computer vision methods for recognising body gestures and machine learning classification methods offer an opportunity to understand what people express with their bodies. This research work focuses on the emotions expressed by body gestures, particularly the posture. Thus, an automatic emotion recognition system from images is proposed, which uses a graph convolutional neural network to perform the classification. Generally, deep learning approach needs many training samples, but these are difficult to obtain for posture emotion recognition, thus, the proposed model trains under a meta-learning algorithm based on the “agnostic model”, which allows training with few examples. Only the meta-learning algorithm was tested, which demonstrated the adaptability and expands the applicability of the graph convolutional neural networks.
Enlace al repositorio: https://hdl.handle.net/20.500.12590/16702
Disciplina académico-profesional: Ciencia de la Computación
Institución que otorga el grado o título: Universidad Católica San Pablo. Departamento de Ciencia de la Computación
Grado o título: Bachiller en Ciencia de la Computación
Jurado: Rensso Victor Hugo Mora Colque; Ana Maria Cuadros Valdivia
Fecha de registro: 5-abr-2021
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons