Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Flores, V., (2023). Priority sampling and visual attention for self-driving car [Tesis de maestría, Universidad Católica San pablo]. https://hdl.handle.net/20.500.12590/17744
Flores, V., Priority sampling and visual attention for self-driving car [Tesis de maestría]. PE: Universidad Católica San pablo; 2023. https://hdl.handle.net/20.500.12590/17744
@mastersthesis{renati/781969,
title = "Priority sampling and visual attention for self-driving car",
author = "Flores Benites, Victor",
publisher = "Universidad Católica San pablo",
year = "2023"
}
Título: Priority sampling and visual attention for self-driving car
Autor(es): Flores Benites, Victor
Asesor(es): Mora Colque, Rensso Victor Hugo
Palabras clave: Visual attention; Self-driving; Non-identically distributed data distribution; End-to-end methods
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.01
Fecha de publicación: 2023
Institución: Universidad Católica San pablo
Resumen: End-to-end methods facilitate the development of self-driving models by employing a single network that learns the human driving style from examples. However, these models face problems such as distributional shift, causal confusion, and high variance. To address these problems we propose two techniques. First, we propose the priority sampling algorithm, which biases a training sampling towards unknown observations for the model. Priority sampling employs a trade-off strategy that incentivizes the training algorithm to explore the whole dataset. Our results show a reduction of the error in the control signals in all the models studied. Moreover, we show evidence that our algorithm limits overtraining on noisy training samples. As a second approach, we propose a model based on the theory of visual attention (Bundesen, 1990) by which selecting relevant visual information to build an optimal environment representation. Our model employs two visual information selection mechanisms: spatial and feature-based attention. Spatial attention selects regions with visual encoding similar to contextual encoding, while feature-based attention selects features disentangled with useful information for routine driving. Furthermore, we encourage the model to recognize new sources of visual information by adding a bottom-up input. Results in the CoRL-2017 dataset (Dosovitskiy et al., 2017) show that our spatial attention mechanism recognizes regions relevant to the driving task. Our model builds disentangled features with low cosine similarity, but with high representation similarity. Finally, we report performance improvements over traditional end-to-end models.
Enlace al repositorio: https://hdl.handle.net/20.500.12590/17744
Disciplina académico-profesional: Ciencia de la Computación
Institución que otorga el grado o título: Universidad Católica San Pablo. Departamento de Ciencia de la Computación
Grado o título: Maestro en Ciencia de la Computación
Jurado: Ochoa Luna, Jose Eduardo; Camara Chavez, Guillermo; Chancán, Marvin
Fecha de registro: 27-sep-2023
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons