Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Heredia, J., (2021). A multi-modal emotion recogniser based on the integration of multiple fusion methods [Tesis, Universidad Católica San Pablo]. https://hdl.handle.net/20.500.12590/16940
Heredia, J., A multi-modal emotion recogniser based on the integration of multiple fusion methods [Tesis]. PE: Universidad Católica San Pablo; 2021. https://hdl.handle.net/20.500.12590/16940
@misc{renati/781860,
title = "A multi-modal emotion recogniser based on the integration of multiple fusion methods",
author = "Heredia Parillo, Juanpablo Andrew",
publisher = "Universidad Católica San Pablo",
year = "2021"
}
Título: A multi-modal emotion recogniser based on the integration of multiple fusion methods
Autor(es): Heredia Parillo, Juanpablo Andrew
Asesor(es): Ticona Herrera, Regina Paola
Palabras clave: Emotion recognition; Multi-modal Method; Multiple Fusion Methods
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.01
Fecha de publicación: 2021
Institución: Universidad Católica San Pablo
Resumen: People naturally express emotions in simultaneous different ways. Thus, multimodal methods are becoming popular for emotion recognition and analysis of reactions to many aspects of daily life. This research work presents a multimodal method for emotion recognition from images. The multi-modal method analyses facial expressions, body gestures and the characteristics of the body and the environment to determine an emotional state, processing each modality with a specialised deep learning model and then applying the proposed fusion method. The fusion method, called EmbraceNet+, consists of a branched architecture that integrates the EmbraceNet fusion method with other fusion methods. The tests carried out on an adaptation of the EMOTIC dataset show that the proposed multi-modal method is effective and improves the results obtained by individual processings, as well as competing with other state-ofthe-art methods. The proposed method has many areas of application because it seeks to recognise emotions in any situation. Likewise, the proposed fusion method can be used in any multi-modal deep learning-based model.
Enlace al repositorio: https://hdl.handle.net/20.500.12590/16940
Disciplina académico-profesional: Ciencia de la Computación
Institución que otorga el grado o título: Universidad Católica San Pablo. Departamento de Ciencia de la Computación
Grado o título: Licenciado en Ciencia de la Computación
Jurado: Jose Eduardo Ochoa Luna; Yessenia Deysi Yari Ramos
Fecha de registro: 29-nov-2021
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons