Look-up in Google Scholar
Title: Uso de Machine Learning para estimar la producción de cultivos frutales: análisis de tendencias y agenda de investigación
Advisor(s): Mejia Cabrera, Heber Ivan
OCDE field: https://purl.org/pe-repo/ocde/ford#2.02.04
Issue Date: 2024
Institution: Universidad Señor de Sipán
Abstract: La estimación precisa de la producción de cultivos frutales es crucial para mejorar la planificación agrícola, optimizando la cosecha, el almacenamiento y la distribución, y, en última instancia, gestionando de manera más eficiente la cadena de suministro agrícola. Este estudio presenta una revisión sistemática sobre el uso de métodos de inteligencia artificial (IA) y machine learning (ML) en la estimación de la producción de cultivos frutales. Aplicando la metodología PRISMA, se identificaron 266 documentos en las bases de datos Scopus y Web of Science, de los cuales se analizaron 21 tras aplicar criterios de inclusión y exclusión. La investigación examina qué cultivos frutales utilizan técnicas de machine learning para la estimación de producción y qué técnicas muestran el mejor desempeño en la estimación o conteo de cultivos. Se identificaron tendencias emergentes, como la integración de variables climáticas, el uso de imágenes multiespectrales y la implementación de sistemas en tiempo real. Se propone una agenda de investigación para abordar las lagunas existentes, enfocándose en el desarrollo de soluciones ligeras y escalables para su implementación práctica en la agricultura.
Discipline: Ingeniería de Sistemas
Grade or title grantor: Universidad Señor de Sipán. Facultad de Ingeniería, Arquitectura y Urbanismo
Grade or title: Bachiller en Ingeniería de Sistemas
Register date: 23-Sep-2024



This item is licensed under a Creative Commons License Creative Commons