Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Pampa, J., (2023). Enfoque energético para el diseño de placas híbridas de concreto en zonas sísmicas [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/27361
Pampa, J., Enfoque energético para el diseño de placas híbridas de concreto en zonas sísmicas [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/27361
@mastersthesis{renati/713045,
title = "Enfoque energético para el diseño de placas híbridas de concreto en zonas sísmicas",
author = "Pampa Vara, Jan Carlos",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
Título: Enfoque energético para el diseño de placas híbridas de concreto en zonas sísmicas
Autor(es): Pampa Vara, Jan Carlos
Asesor(es): Torres Matos, Miguel Ángel
Palabras clave: Comportamiento estructural; Zonas sísmicas; Placas híbridas de concreto
Campo OCDE: http://purl.org/pe-repo/ocde/ford#2.01.04
Fecha de publicación: 2023
Institución: Universidad Nacional de Ingeniería
Resumen: El estudio de placas híbridas tiene sus inicios en el programa PRESS como el resultado de la cooperación entre investigadores de Estados Unidos y Japón, esta tesis aborda los conceptos del análisis, diseño y comportamiento de este sistema estructural en el esquema de 5 capítulos.
En el capítulo I, se describe la evolución en el estudio de las placas hibridas hasta la fecha, en la que autores como Kurama, El-Sheik, Rahman, Restrepo y muchos más aportaron con resultados experimentales sobre placas postensadas, y es en base a muchos de estos estudios que se comenzaron a proponer requerimientos de diseño.
Las placas híbridas son elementos compuestos de 3 materiales, concreto, acero de refuerzo y acero postensado, el capítulo II describe el comportamiento en función de las curvas esfuerzo-deformación basados en propuestas matemáticas y experimentales de autores como Mander y Dodd-Restrepo, de forma que la respuesta de una placa híbrida está sujeta a las características y cantidades de cada uno de estos.
El capítulo III muestra los resultados experimentales de dos placas híbridas, la primera de Rahman y Restrepo (2000) y la segunda de Smith y Kurama (2012) para ser comparadas por medio de un modelo analítico en el programa SAP2000, en el cual queda demostrado que se puede obtener una aproximación muy cercana a dichos resultados experimentales.
Con el objetivo de tener una cuantificación de la cantidad de energía que disipa una placa híbrida respecto a una placa convencional, en el capítulo IV se demuestra que las placas híbridas correctamente diseñadas pueden disipar al menos 1/8 de energía relativa y que disipan entre un 48% a 64% de la cantidad que disipa una placa convencional.
Debido a que no existe una normativa peruana reglamentaria sobre las placas híbridas, en el capítulo V, se propone un proceso de diseño de placas híbridas para las demandas sísmicas peruanas, ya que en esta región existe una alta sismicidad, este proceso toma en cuenta los aspectos de materiales descritos para una adecuada disipación de energía y una comprobación de resultados en base al modelo del capítulo III.
The study of hybrid shear-walls has its beginnings in the PRESS program as the result of cooperation between researchers from the United States and Japan, this thesis its about the concepts of analysis, design and behavior of this structural system in the scheme of 5 chapters. Chapter I describes the evolution in the study of hybrid shear-walls to date, in which authors such as Kurama, El-sheik, Rahman, Restrepo and many more contributed with experimental results on post-tensioned shear-walls, and it is based on many it is from these studies that design requirements began to be proposed. Hybrid shear-walls are elements composed of 3 materials, concrete, reinforcing steel and post-tensioned steel, chapter II describes the behavior as a function of stress-strain curves based on mathematical and experimental proposals by authors such as Mander and Dodd-Restrepo, so the response of a hybrid shear-wall is subject to the characteristics and amounts of each of these. Chapter III shows the experimental results of two hybrid shear-walls, the first by Rahman and Restrepo (2000) and the second by Smith and Kurama (2012) to be compared by means of an analytical model in the SAP2000 program, in which it is demonstrated that a very close approximation to the said experimental results can be obtained. In order to have a quantification of the amount of energy that a hybrid shear-wall dissipates with respect to a conventional shear-wall, in chapter IV it is shown that properly designed hybrid shear-walls can dissipate at least 1/8 of relative energy and that they dissipate between a 48% to 64% of the amount that a conventional shear-wall dissipates. Because there is no peruvian regulation on hybrid shear-walls, in chapter V, a hybrid shear-wall design process is proposed for peruvian seismic demands, since in this region there is high seismicity, this process takes into account the aspects of materials described for adequate energy dissipation and a verification of results based on the model in chapter.
The study of hybrid shear-walls has its beginnings in the PRESS program as the result of cooperation between researchers from the United States and Japan, this thesis its about the concepts of analysis, design and behavior of this structural system in the scheme of 5 chapters. Chapter I describes the evolution in the study of hybrid shear-walls to date, in which authors such as Kurama, El-sheik, Rahman, Restrepo and many more contributed with experimental results on post-tensioned shear-walls, and it is based on many it is from these studies that design requirements began to be proposed. Hybrid shear-walls are elements composed of 3 materials, concrete, reinforcing steel and post-tensioned steel, chapter II describes the behavior as a function of stress-strain curves based on mathematical and experimental proposals by authors such as Mander and Dodd-Restrepo, so the response of a hybrid shear-wall is subject to the characteristics and amounts of each of these. Chapter III shows the experimental results of two hybrid shear-walls, the first by Rahman and Restrepo (2000) and the second by Smith and Kurama (2012) to be compared by means of an analytical model in the SAP2000 program, in which it is demonstrated that a very close approximation to the said experimental results can be obtained. In order to have a quantification of the amount of energy that a hybrid shear-wall dissipates with respect to a conventional shear-wall, in chapter IV it is shown that properly designed hybrid shear-walls can dissipate at least 1/8 of relative energy and that they dissipate between a 48% to 64% of the amount that a conventional shear-wall dissipates. Because there is no peruvian regulation on hybrid shear-walls, in chapter V, a hybrid shear-wall design process is proposed for peruvian seismic demands, since in this region there is high seismicity, this process takes into account the aspects of materials described for adequate energy dissipation and a verification of results based on the model in chapter.
Enlace al repositorio: http://hdl.handle.net/20.500.14076/27361
Disciplina académico-profesional: Maestría en Ciencias en Ingeniería Civil con Mención en Estructuras
Institución que otorga el grado o título: Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil. Unidad de Posgrado
Grado o título: Maestro en Ciencias en Ingeniería Civil con Mención en Estructuras
Jurado: Gálvez Villacorta, Adolfo Guillermo; Olarte Navarro, Jorge Milciades; Jiménez Yábar, Heddy Marcela; Gutiérrez Lázares, José Wilfredo
Fecha de registro: 31-jul-2024
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons