Citas bibligráficas
Nolasco, R., (2023). Desarrollo de un modelo predictivo basado en aprendizaje de máquina para mejorar el proceso de selección de personal en una empresa de consultoría tecnológica [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/27102
Nolasco, R., Desarrollo de un modelo predictivo basado en aprendizaje de máquina para mejorar el proceso de selección de personal en una empresa de consultoría tecnológica [Tesis]. PE: Universidad Nacional de Ingeniería; 2023. http://hdl.handle.net/20.500.14076/27102
@misc{renati/712962,
title = "Desarrollo de un modelo predictivo basado en aprendizaje de máquina para mejorar el proceso de selección de personal en una empresa de consultoría tecnológica",
author = "Nolasco Chavez, Ronaldo Farid",
publisher = "Universidad Nacional de Ingeniería",
year = "2023"
}
In recent years, a great complexity has been observed in the personnel selection process in companies related to technology Consulting. This is due to the high demand of candidates for positions in this sector, the high competition in terms of required knowledge and also to the limited resources of the hiring companies to meet project deadlines. It is because of this that in this thesis a predictive model based on machine learning is presented, in order to predict a set of candidates that are more suitable for the job, and to be able to translate these results into a report for the HR area, which they will use to make the final hiring decision. The results of the solution have been evaluated, obtaining accuracy and precision metrics that exceed 98%, which provides confidence in the results obtained. Likewise, the ability to achieve these results in minimum time has been evaluated, achieving candidate filtering times of less than 5 seconds, and also report generation times of less than 0.1 seconds, both optimal times for the process. On the one hand, this solution manages to solve the problem for the company to which it is applied, but, on the other hand, the contribution to the field of knowledge makes it possible to replicate this development to other companies in the same sector within the Peruvian territory.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons