Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Peña, R., (2022). Simulador numérico para el flujo bifásico en un medio poroso [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/24114
Peña, R., Simulador numérico para el flujo bifásico en un medio poroso [Tesis]. PE: Universidad Nacional de Ingeniería; 2022. http://hdl.handle.net/20.500.14076/24114
@misc{renati/712453,
title = "Simulador numérico para el flujo bifásico en un medio poroso",
author = "Peña Aguinaga, Roland Rogelio",
publisher = "Universidad Nacional de Ingeniería",
year = "2022"
}
Title: Simulador numérico para el flujo bifásico en un medio poroso
Authors(s): Peña Aguinaga, Roland Rogelio
Advisor(s): Colán García, Luis Alberto
OCDE field: http://purl.org/pe-repo/ocde/ford#2.07.03
Issue Date: 2022
Institution: Universidad Nacional de Ingeniería
Abstract: Los reservorios de petróleo y gas son cuerpos de roca porosos y permeables que tienen la capacidad de almacenar y transmitir fluidos; a medida que se producen estas unidades geológicas, ¡la presión del reservorio y la capacidad de entrega de hidrocarburos disminuyen continuamente; por este motivo, se recurre a técnicas de recuperación secundaria con la finalidad de aumentar la presión del reservorio y mejorar la producción.
¡Uno de los procesos de recuperación secundaria más utilizados es la inyección de agua (waterflooding); sin embargo, implementar un proyecto de inyección de agua es muy costoso e implica un gran desembolso de capital.
Previo al desarrollo de un proyecto de recuperación secundaria es importante modelar y simular el flujo de los fluidos en el medio poroso con el fin de entender y predecir el comportamiento del reservorio bajo determinadas condiciones de operación de los pozos productores e inyectores. El fenómeno del flujo de fluidos a través del medio poroso se formula matemáticamente mediante ecuaciones diferenciales parciales (PDE) no lineales y acopladas cuya solución analítica no se puede obtener por lo que es necesario recurrir a esquemas numéricos para obtener una solución aproximada.
Comprender y modelar el fenómeno físico del flujo de fluidos en el medio poroso es de suma importancia desde el punto de vista académico para desarrollar un simulador que represente los fenómenos que se originan durante el proceso. Los simuladores comerciales son de código cerrado por lo que no es posible modificar, ampliar y/o adaptar nuevas propuestas numéricas y computacionales. En ese sentido, las licencias de uso de un simulador comercial generalmente son costosas y la documentación de los modelos matemático, numérico y computacional en el que se basan no son de dominio público.
En esta tesis se presenta una metodología para simular numéricamente el problema del flujo bifásico (agua y petróleo) en un medio poroso ligeramente compresible durante el proceso de inyección de agua en reservorios petroleros con la finalidad de conocer la distribución temporal de la saturación y la presión de los fluidos.
Se define el modelo conceptual y se formula el modelo matemático que representa el fenómeno físico del flujo bifásico en una dimensión (1D) y dos dimensiones (2D) mediante PDE fuertemente acopladas. ¡El sistema de ecuaciones se discretiza usando técnicas numéricas como el método de volumen finito (FVM) en el espacio y el esquema de solución totalmente implícito (FIM) en el tiempo; este esquema considera implícitamente los valores de saturación de agua y presión de petróleo. ¡Se utiliza el FIM debido a que es incondicionalmente estable para pasos de tiempo grandes; además, es usado en muchos softwares comerciales de simulación de reservorios.
El sistema de ecuaciones obtenido a partir de la discretización de las PDE es un sistema no lineal, por lo que se requiere linealizarlo y solucionarlo mediante el método de Newton-Raphson (NR).
La implementación computacional es desarrollada en el lenguaje de programación Python 3.7. También se recurre a bibliotecas optimizadas para el álgebra lineal y a una biblioteca especializada en la generación de gráficos, estas bibliotecas son de código abierto y fácil implementación en el código computacional.
La metodología propuesta permite validar el código computacional con experimentos numéricos en 1D y 2D. Asimismo, diversos datos presentados en la literatura permitieron generar casos de simulación para analizar la compresibilidad de la roca, la influencia de la presión capilar y la relación de las viscosidades de las fases del fluido sobre la distribución temporal de la presión de petróleo y saturación de agua en el medio poroso. Por ende, se ejecutaron 7 casos: 3 casos de validación y 4 casos de análisis.
Las contribuciones principales del trabajo son la consideración de la compresibilidad del medio poroso, la presión capilar y la razón de viscosidades en el modelo físico-matemático (la primera variable generalmente suele ser despreciada en las principales referencias del tema), y el desarrollo de un simulador robusto que permite analizar las variaciones temporales de saturación y presión de los fluidos en el medio poroso bajo diferentes condiciones de operación.
Oil and gas reservoirs are porous and permeable bodies of rock that have the capacity to store and transmit fluids; as these geological units are produced, reservoir pressure and hydrocarbon delivery capacity continually decrease; for this reason, secondary recovery techniques are used to increase reservoir pressure and improve production. One of the most widely used secondary recovery processes is waterflooding; however, implementing a waterflooding project is very expensive and involves a large capital outlay. Prior to the development of a secondary recovery project, it is important to model and simulate the flow of fluids in the porous media in order to understand and predict the behavior of the reservoir under certain operating conditions of the producing and injector wells. The phenomenon of fluid flow through the porous media is mathematically formulated by means of nonlinear and coupled partial differential equations (PDE) whose analytical solution cannot be obtained, so it is necessary to resort to numerical schemes to obtain an approximate solution. Understanding and modeling the physical phenomenon of fluid flow in the porous media is of utmost importance from the academic point of view to develop a simulator that represents the phenomena that originate during the process. Commercial simulators are closed source so it is not possible to modify, extend and/or adapt new numerical and computational proposals. In this sense, the licenses for the use of a commercial simulator are generally expensive and the documentation of the mathematical, numerical and computational models on which they are based are not in the public domain. This thesis presents a methodology to numerically simulate the problem of two-phase flow (water and oil) in a slightly compressible porous media during the process of water injection in oil reservoirs in order to know the temporal distribution of fluid saturation and pressure. The conceptual model is defined and the mathematical model that represents the physical phenomenon of two-phase flow in one dimension (1D) and two dimensions (2D) is formulated using strongly coupled PDE. The system of equations is discretized using numerical techniques such as the finite volume method (FVM) in space and the fully implicit solution scheme (FIM) in time; this scheme implicitly considers the values of water saturation and oil pressure. The FIM is used because it is unconditionally stable for large time steps; moreover, it is used in many commercial reservoir simulation software. The system of equations obtained from the discretization of the PDEs is a nonlinear system, so it is required to linearize it and then solve it using the Newton-Raphson (NR) method. The computational implementation is developed in the Python 3.7 programming language. It also uses libraries optimized for linear algebra and a library specialized in the generation of graphics; these libraries are open source and easy to implement in the computational code. The proposed methodology allows validating the computational code with numerical experiments in 1D and 2D. Likewise, several data presented in the literature allowed the generation of simulation cases to analyze the rock compressibility, influence of capillary pressure and the relationship of fluid phase viscosities on the temporal distribution of oil pressure and water saturation in the porous media. Therefore, 7 cases were run: 3 validation cases and 4 analysis cases. The main contributions of the work are the consideration of the compressibility of the porous media, the capillary pressure and the viscosity ratio in the physical-mathematical model (the first variable is usually neglected in the main references on the subject), and the development of a robust simulator that allows analyzing the temporal variations of saturation and pressure of the fluids in the porous media under different operating conditions.
Oil and gas reservoirs are porous and permeable bodies of rock that have the capacity to store and transmit fluids; as these geological units are produced, reservoir pressure and hydrocarbon delivery capacity continually decrease; for this reason, secondary recovery techniques are used to increase reservoir pressure and improve production. One of the most widely used secondary recovery processes is waterflooding; however, implementing a waterflooding project is very expensive and involves a large capital outlay. Prior to the development of a secondary recovery project, it is important to model and simulate the flow of fluids in the porous media in order to understand and predict the behavior of the reservoir under certain operating conditions of the producing and injector wells. The phenomenon of fluid flow through the porous media is mathematically formulated by means of nonlinear and coupled partial differential equations (PDE) whose analytical solution cannot be obtained, so it is necessary to resort to numerical schemes to obtain an approximate solution. Understanding and modeling the physical phenomenon of fluid flow in the porous media is of utmost importance from the academic point of view to develop a simulator that represents the phenomena that originate during the process. Commercial simulators are closed source so it is not possible to modify, extend and/or adapt new numerical and computational proposals. In this sense, the licenses for the use of a commercial simulator are generally expensive and the documentation of the mathematical, numerical and computational models on which they are based are not in the public domain. This thesis presents a methodology to numerically simulate the problem of two-phase flow (water and oil) in a slightly compressible porous media during the process of water injection in oil reservoirs in order to know the temporal distribution of fluid saturation and pressure. The conceptual model is defined and the mathematical model that represents the physical phenomenon of two-phase flow in one dimension (1D) and two dimensions (2D) is formulated using strongly coupled PDE. The system of equations is discretized using numerical techniques such as the finite volume method (FVM) in space and the fully implicit solution scheme (FIM) in time; this scheme implicitly considers the values of water saturation and oil pressure. The FIM is used because it is unconditionally stable for large time steps; moreover, it is used in many commercial reservoir simulation software. The system of equations obtained from the discretization of the PDEs is a nonlinear system, so it is required to linearize it and then solve it using the Newton-Raphson (NR) method. The computational implementation is developed in the Python 3.7 programming language. It also uses libraries optimized for linear algebra and a library specialized in the generation of graphics; these libraries are open source and easy to implement in the computational code. The proposed methodology allows validating the computational code with numerical experiments in 1D and 2D. Likewise, several data presented in the literature allowed the generation of simulation cases to analyze the rock compressibility, influence of capillary pressure and the relationship of fluid phase viscosities on the temporal distribution of oil pressure and water saturation in the porous media. Therefore, 7 cases were run: 3 validation cases and 4 analysis cases. The main contributions of the work are the consideration of the compressibility of the porous media, the capillary pressure and the viscosity ratio in the physical-mathematical model (the first variable is usually neglected in the main references on the subject), and the development of a robust simulator that allows analyzing the temporal variations of saturation and pressure of the fluids in the porous media under different operating conditions.
Link to repository: http://hdl.handle.net/20.500.14076/24114
Discipline: Ingeniería de Petróleo y Gas Natural
Grade or title grantor: Universidad Nacional de Ingeniería. Facultad de Ingeniería de Petróleo, Gas Natural y Petroquímica
Grade or title: Ingeniero de Petróleo y Gas Natural
Juror: Argumé Chávez, Edgard Américo; Ingaluque Arapa, Juan Ernesto
Register date: 30-Mar-2023
This item is licensed under a Creative Commons License