Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Munguía, J., (2021). Hybrid high order methods for elliptic problems [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/22473
Munguía, J., Hybrid high order methods for elliptic problems [Tesis]. PE: Universidad Nacional de Ingeniería; 2021. http://hdl.handle.net/20.500.14076/22473
@phdthesis{renati/712006,
title = "Hybrid high order methods for elliptic problems",
author = "Munguía La Cotera, Jonathan Alfredo",
publisher = "Universidad Nacional de Ingeniería",
year = "2021"
}
Título: Hybrid high order methods for elliptic problems
Autor(es): Munguía La Cotera, Jonathan Alfredo
Asesor(es): Ocaña Anaya, Eladio Teófilo
Palabras clave: Métodos híbridos de alto orden (HHO); Problemas elípticos
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.01.01
Fecha de publicación: 2021
Institución: Universidad Nacional de Ingeniería
Resumen: El objetivo de esta tesis es analizar, desarrollar e implementar esquemas primales y mixtos para ciertos problemas elípticos, basados en la filosofía de los métodos híbridos de alto orden (HHO).
Hacemos uso de resultados conocidos, como el Lema de Lax-Milgram, para formulaciones primales, y la teoría de Babuˇska-Brezzi, para esquemas mixtos, con el propósito de establecer existencia y unicidad de problemas lineales y no lineales que surgen en el contexto de problemas físicos, como por ejemplo en la mecánica de fluidos.
Establecemos la solubilidad única de los problemas continuo y discreto, con su estimación de error a priori correspondiente, para el problema de Neumann, una cierta clase de problemas elípticos no lineales y para problemas de transmisión interior.
En cada uno de los capítulos desarrollados, se incluye varios experimentos numéricos, que ilustran el buen desempeño de los esquemas propuestos, y confirman los resultados teóricos de convergencia, obtenidos en el análisis correspondiente.
The objective of this thesis is to analyze, develop and implement primal and mixed schemes for certain elliptic problems, based on the philosophy of Hybrid High-Order (HHO) methods. We make use of known results, such as Lax-Milgram’s Lemma for primal formulations, and Babuska-Brezzi’s theory for mixed schemes, in order to establish the unique solvability of linear and nonlinear problems that arise in the context of physical problems, for example: fluid mechanics. We prove the well-posedness of continuous and discrete problems, related to the Neumann problem, a certain class of nonlinear elliptic problems, and an interior transmission problem. We include their corresponding a priori error analysis. In addition, in each of the next chapters, several numerical experiments are included, which illustrate the good performance of the proposed schemes, and confirm the theoretical convergence results, as established in the corresponding analysis.
The objective of this thesis is to analyze, develop and implement primal and mixed schemes for certain elliptic problems, based on the philosophy of Hybrid High-Order (HHO) methods. We make use of known results, such as Lax-Milgram’s Lemma for primal formulations, and Babuska-Brezzi’s theory for mixed schemes, in order to establish the unique solvability of linear and nonlinear problems that arise in the context of physical problems, for example: fluid mechanics. We prove the well-posedness of continuous and discrete problems, related to the Neumann problem, a certain class of nonlinear elliptic problems, and an interior transmission problem. We include their corresponding a priori error analysis. In addition, in each of the next chapters, several numerical experiments are included, which illustrate the good performance of the proposed schemes, and confirm the theoretical convergence results, as established in the corresponding analysis.
Enlace al repositorio: http://hdl.handle.net/20.500.14076/22473
Disciplina académico-profesional: Doctorado en Ciencias con Mención en Matemática
Institución que otorga el grado o título: Universidad Nacional de Ingeniería. Facultad de Ciencias. Unidad de Posgrado
Grado o título: Doctor en Ciencias con Mención en Matemática
Jurado: Ochoa Jiménez, Rosendo; Cockburn, Bernardo; Castillo, Paul; Bustinza Pariona, Rommel Andrés; Arancibia Samaniego, Ada Liz
Fecha de registro: 2-ago-2022
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons