Bibliographic citations
Carrasco, S., Céspedes, J. (2019). Modelo matemático para obtener tamaños óptimos en plantas de polietilenos, policloruro de vinilo y polietilentereftalato a partir del etano [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/19070
Carrasco, S., Céspedes, J. Modelo matemático para obtener tamaños óptimos en plantas de polietilenos, policloruro de vinilo y polietilentereftalato a partir del etano [Tesis]. PE: Universidad Nacional de Ingeniería; 2019. http://hdl.handle.net/20.500.14076/19070
@mastersthesis{renati/710606,
title = "Modelo matemático para obtener tamaños óptimos en plantas de polietilenos, policloruro de vinilo y polietilentereftalato a partir del etano",
author = "Céspedes Morante, Jorge Benigno",
publisher = "Universidad Nacional de Ingeniería",
year = "2019"
}
The main problem in designing a petrochemical complex is the cailculation of the optimum size of the plants that comprise it, because plants to be very large or very small generate overruns in the future. This paper presents a mathematical model designed in an Excel spreadsheet that allows to calculate the optimal size of the complex and interrelated factors: the market, the technologies available, mínimum sizes of plant and others. The petrochemical complex consists of 8 units, using as feedstock ethane to give 4 final products: High density polyethylene (HOPE), low density polyethylene (LOPE), polyvinyl chloride (PVC) and polyethylene terephthalate (PET). The variables are arrays of two or three dimensions, the most important being the maximum production, yields, annual production of each plant, plant capacity factor, service, investment, costs and market demands. They have determined that the optima! size of the final petrochemical plants are: 431 509 t/year of HOPE, 336 009 t/year of LOPE (two plants in paralfel), 355 998 t/year of PVC and 548 549 t / year of PET; while basic and intermediate petrochemical plants are 1 369 7 41 t/year ethylene production in the pyrolysis plant, 357 066 t/year of vinyl chloride monomer (VCM), 185 410 t/year of ethylene oxide (OE) and 185 410 t/year of ethylene glycol (EG). We conclude that it is possible to determine the optimal size of a petrochemical plant complex from the interplay of variables designing a mathematical model.
This item is licensed under a Creative Commons License