Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Garrido, C., (2018). Análisis sísmico de tanques esféricos elevados [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/13398
Garrido, C., Análisis sísmico de tanques esféricos elevados [Tesis]. : Universidad Nacional de Ingeniería; 2018. http://hdl.handle.net/20.500.14076/13398
@misc{renati/709187,
title = "Análisis sísmico de tanques esféricos elevados",
author = "Garrido Chávez, César Augusto",
publisher = "Universidad Nacional de Ingeniería",
year = "2018"
}
Título: Análisis sísmico de tanques esféricos elevados
Autor(es): Garrido Chávez, César Augusto
Asesor(es): Fernández Dávila Gonzáles, Víctor Iván
Palabras clave: Análisis sísmico; Tanques de almacenamiento de crudos
Fecha de publicación: 2018
Institución: Universidad Nacional de Ingeniería
Resumen: Se presenta el estudio del comportamiento sísmico estructural de tanques elevados esféricos, los cuales son utilizados frecuentemente en el almacenamiento de hidrocarburos debido a que su geometría permite una distribución de presiones uniforme. La estructura está conformada por una esfera de acero conectada al suelo mediante un sistema de soporte compuesto por columnas arriostradas y distribuidas en el contorno circular, proporcionando la rigidez y resistencia al sistema.
Se seleccionaron los parámetros geométricos y dinámicos más representativos del sistema estructural a través de un previo análisis de sensibilidad efectuado a siete tanques esféricos reales, el cual comprendió el estudio analítico de las ecuaciones diferenciales del movimiento y el análisis sísmico de los tanques. Las solicitaciones sísmicas del modelo empleado fueron calculadas a partir del espectro de diseño de pseudo-aceleraciones de la norma peruana E.030 vigente. Se utilizó un modelo tridimensional, donde la interacción líquido-estructura fue definida por modelos equivalente de masa-resorte, y se consideró que el contenido de fluido fuera agua. El modelo generado fue validado con un modelo de elementos finitos para definir la interacción liquido-estructura, alcanzando porcentajes de error menores a 8% en las frecuencias naturales de vibración.
Del estudio sísmico en la familia reducida de tanques se obtuvieron las fuerzas cortantes sísmicas basales y los desplazamientos laterales máximos del tanque, observando que la variación de estas respuestas depende del factor de zona, el volumen de la esfera, el nivel de llenado y las rigideces del sistema de soporte. A partir de estos resultados se lograron identificar cinco parámetros que representan el comportamiento dinámico estructural los cuales son: la relación de esbeltez (RE), la relación diámetro y espesor de la cuba (DE), la relación de llenado del tanque (RH), el periodo de vibración lateral del tanque (Ty) y el grado de acoplamiento torsional (Ωθ).
Posteriormente, se generó una familia de 324 casos a partir de una combinatoria de los cinco parámetros mencionados, los cuales fueron analizados con espectros correspondientes a las cuatro zonas sísmicas que indica la norma E.030. Del análisis sísmico se obtuvieron los periodos de vibración, las fuerzas cortantes basales, los momentos de volteo y los desplazamientos laterales, observando una clara diferencia entre los modelos de periodo de vibración corto (Ty = 0.1s ~ 0.3s) y los de periodo de vibración largo (Ty = 0.4s ~ 0.6s), en donde en este último se tuvo un comportamiento acoplado entre el líquido y la estructura, es decir no existía un modo exclusivo relacionado al movimiento del líquido. Además, se apreció que el parámetro DE resulto muy influyente en todas las respuestas debido a su relación directa con el peso de la estructura y por ende de su rigidez. Adicionalmente, a partir de los resultados obtenidos se formuló un modelo simplificado que permitió representar los resultados globales de los modelos tridimensionales con un margen de error promedio menor a 7% en dichos valores.
We present a study of seismic behavior of spherical elevated tanks, which are often used in hydrocarbon storage due to its geometry allows a uniform pressure distribution. The structure is composed of a steel sphere connected to the base level by a support system consisting of columns braced and distributed in the circular perimeter, responsible for providing rigidity and strength to the system. The geometric and physic parameters that represent of the structural model were selected through a prior sensitivity analysis performed to seven real spherical tanks, which includes the analytical study of the equations of motion and seismic analysis of tanks. The seismic forces were calculated from seismic design spectra of the Peruvian code E.030. A three-dimensional model was used, where the liquid-structure interaction was defined by mass-spring models, and the fluid content was considered as water. The generated model was validated with a finite element model to define the liquid-structure interaction, reaching error percentages that do not exceed 8% in the natural frequencies of vibration. From the seismic study applied to the reduced family of tanks it was observed that the variation of the main responses depended on the zone factor, the sphere volume, the filling level and stiffness of the support system. From these results were able to identify five parameters representing its structural dynamic behavior which are: slenderness ratio (RE), tank diameter/thickness ratio (DE), tank filling ratio (RH), lateral period of the tank (Ty) and degree of torsional coupling (Ωθ). Subsequently, a family of 324 cases was generated by a combinatorial of the five parameters mentioned, which were analyzed with spectra corresponding to the 4 seismic zones that indicate the norm E.030. The results observed were both local and global. From the seismic study the periods of vibration, the shear forces, the overturning moments and the lateral displacements were obtained, noting a clear difference between the models of short period (Ty = 0.1s ~ 0.3s) and long period (Ty = 0.4s ~ 0.6s), where in the latter a behavior was coupled between the liquid and the structure. It was also noted that DE parameter was very influential in all responses due to its direct relation with the weight and stiffness of the structure. In addition, a simplified method was developed based on the results obtained, allowing the overall results to be obtained quickly and reliably, with an average margin of error of 7% in relation to three-dimensional models.
We present a study of seismic behavior of spherical elevated tanks, which are often used in hydrocarbon storage due to its geometry allows a uniform pressure distribution. The structure is composed of a steel sphere connected to the base level by a support system consisting of columns braced and distributed in the circular perimeter, responsible for providing rigidity and strength to the system. The geometric and physic parameters that represent of the structural model were selected through a prior sensitivity analysis performed to seven real spherical tanks, which includes the analytical study of the equations of motion and seismic analysis of tanks. The seismic forces were calculated from seismic design spectra of the Peruvian code E.030. A three-dimensional model was used, where the liquid-structure interaction was defined by mass-spring models, and the fluid content was considered as water. The generated model was validated with a finite element model to define the liquid-structure interaction, reaching error percentages that do not exceed 8% in the natural frequencies of vibration. From the seismic study applied to the reduced family of tanks it was observed that the variation of the main responses depended on the zone factor, the sphere volume, the filling level and stiffness of the support system. From these results were able to identify five parameters representing its structural dynamic behavior which are: slenderness ratio (RE), tank diameter/thickness ratio (DE), tank filling ratio (RH), lateral period of the tank (Ty) and degree of torsional coupling (Ωθ). Subsequently, a family of 324 cases was generated by a combinatorial of the five parameters mentioned, which were analyzed with spectra corresponding to the 4 seismic zones that indicate the norm E.030. The results observed were both local and global. From the seismic study the periods of vibration, the shear forces, the overturning moments and the lateral displacements were obtained, noting a clear difference between the models of short period (Ty = 0.1s ~ 0.3s) and long period (Ty = 0.4s ~ 0.6s), where in the latter a behavior was coupled between the liquid and the structure. It was also noted that DE parameter was very influential in all responses due to its direct relation with the weight and stiffness of the structure. In addition, a simplified method was developed based on the results obtained, allowing the overall results to be obtained quickly and reliably, with an average margin of error of 7% in relation to three-dimensional models.
Enlace al repositorio: http://hdl.handle.net/20.500.14076/13398
Disciplina académico-profesional: Ingeniería Civil
Institución que otorga el grado o título: Universidad Nacional de Ingeniería. Facultad de Ingeniería Civil
Grado o título: Ingeniero Civil
Fecha de registro: 3-sep-2018
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons