Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Minaya, C., (2005). Estudio quimiométrico de los controles de aguas de la empresa Unipetro ABC S.A.C. [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/11600
Minaya, C., Estudio quimiométrico de los controles de aguas de la empresa Unipetro ABC S.A.C. [Tesis]. : Universidad Nacional de Ingeniería; 2005. http://hdl.handle.net/20.500.14076/11600
@misc{renati/708596,
title = "Estudio quimiométrico de los controles de aguas de la empresa Unipetro ABC S.A.C.",
author = "Minaya Ames, Carlos Enrique",
publisher = "Universidad Nacional de Ingeniería",
year = "2005"
}
Título: Estudio quimiométrico de los controles de aguas de la empresa Unipetro ABC S.A.C.
Autor(es): Minaya Ames, Carlos Enrique
Asesor(es): Jacinto Hernández, Christian Ronald
Palabras clave: Estudio quimiométrico; Agua
Fecha de publicación: 2005
Institución: Universidad Nacional de Ingeniería
Resumen: Los estudios de monitoreo ambiental producen una enorme cantidad de datos de concentración esparcidos en diversos sitios geográficos y durante diferentes periodos de tiempo. Todos estos valores son difíciles de abarcar y evaluar de un modo simple y rápido usando las herramientas estadísticas univariantes, debido especialmente a su gran número y a su correlación multivariante. Para descubrir patrones relevantes dentro de un gran número de datos multivariantes, se propone la aplicación de los métodos de la moderna Quimiometría, basados en el análisis de datos mediante la estadística multivariante. Después de aplicar los métodos quimio métricos, las fuentes de contaminación, puntuales y difusas, y su origen (natural, antropogénico, industrial, ...) se identifican y se evalúa su distribución entre las muestras. En cada sitio de muestreo, se estima una distribución o prorrateo de las diferentes fuentes de contaminación en el ambiente. En esta tesis, se probarán diferentes métodos quimio métricos en una serie de datos ambientales. En particular, se muestra la aplicación del análisis de componentes principales y de los métodos de clasificación multivariante como poderosas herramientas para lograr el objetivo del modelamiento quimio métrico de las fuentes de contaminación en un gran conjunto de datos ambientales adquiridos durante el monitoreo.
Environmental monitoring studies produce huge amounts of concentration values of chemicals spread at distant geographical sites and during different time periods. All these data values are dif:ficult to cope and evaluate in a simple and fast way using simple univariate statistical tools, specially due to their large number and to their multivariate correlation. In order to discover relevant pattems within large multivariate data sets, the application of modem chemometric methods based in statistical multivariate data analysis is proposed. After applying chemometric methods, point and diffuse sources of contaminants in the environment and their origin (natural, anthropogenic, industrial, ... ) are identified and their relative distribution among samples (geographical, temporal, among environmental compartments) evaluated. At each sampling site, relative source quantitative apportionment is estimated allowing a global evaluation of the environmental impact, distribution and evolution of main chemical contamination sources in the environment. In this presentation, different chemometric methods will be tested on a series of environmental data sets. In particular, the application of principal component analysis and multivariate classificatory methods is shown to be a powerful tool for the goal of chemometrics modelling of contamination sources in large environmental data sets acquired in monitoring studies.
Environmental monitoring studies produce huge amounts of concentration values of chemicals spread at distant geographical sites and during different time periods. All these data values are dif:ficult to cope and evaluate in a simple and fast way using simple univariate statistical tools, specially due to their large number and to their multivariate correlation. In order to discover relevant pattems within large multivariate data sets, the application of modem chemometric methods based in statistical multivariate data analysis is proposed. After applying chemometric methods, point and diffuse sources of contaminants in the environment and their origin (natural, anthropogenic, industrial, ... ) are identified and their relative distribution among samples (geographical, temporal, among environmental compartments) evaluated. At each sampling site, relative source quantitative apportionment is estimated allowing a global evaluation of the environmental impact, distribution and evolution of main chemical contamination sources in the environment. In this presentation, different chemometric methods will be tested on a series of environmental data sets. In particular, the application of principal component analysis and multivariate classificatory methods is shown to be a powerful tool for the goal of chemometrics modelling of contamination sources in large environmental data sets acquired in monitoring studies.
Enlace al repositorio: http://hdl.handle.net/20.500.14076/11600
Disciplina académico-profesional: Química
Institución que otorga el grado o título: Universidad Nacional de Ingeniería. Facultad de Ciencias
Grado o título: Licenciado en Química
Fecha de registro: 1-jun-2018
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons