Citas bibligráficas
Chulluncuy, A., (2014). El teorema de Szemerédi, consecuencias en la distribución de números primos y perspectivas [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/10761
Chulluncuy, A., El teorema de Szemerédi, consecuencias en la distribución de números primos y perspectivas [Tesis]. : Universidad Nacional de Ingeniería; 2014. http://hdl.handle.net/20.500.14076/10761
@mastersthesis{renati/708482,
title = "El teorema de Szemerédi, consecuencias en la distribución de números primos y perspectivas",
author = "Chulluncuy Centeno, Andrés Vicente",
publisher = "Universidad Nacional de Ingeniería",
year = "2014"
}
The classical Szemeredi’s theorem shows the existence of arbitrarily long arithmetic pro- gressions in subsets of natural numbers that have positive upper density. In this paper we address several proofs of the Szemeredi’s theorem through different theoretical frameworks: Fourier analysis, ergodic theory, and Gowers norms. Initially we study Szemeredi’s theorem for arithmetic progressions of length three, known as Roth’s theorem, through Fourier analysis in ZN and incremental density arguments, and we make use of Gowers norms to control the number of arithmetic progressions of length three. These norms significantly simplify the calculations obtained by the exclusive use of Fourier analysis in ZN, while slowering the density increment. However, by the use of Gowers norms we obtain the general case of Sze- meredi’s theorem for arithmetic progressions of lenght greater or equal than three. We deal with Szemeredi’s theorem of progressions of length four by making use of Gowers norms, and then we prove the general case of Szemeredi’s theorem with ergodic theory. Finally, following the work of Green and Tao, we show that the set of prime numbers contain arbitrarily long arithmetic progressions. Because the set of primes numbers has upper density zero, two facts are relevant to demonstrate Green-Tao theorem: an important variant of Szemeredi’s theorem in the context of pseudorandom measures, and the existence of a pseudorandom measure that bounds a certain set of prime numbers.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons