Look-up in Google Scholar
Full metadata record
Escalante Del Águila, Segundo Félix
Astete Chuquichaico, Rolando Gandhi
Astete Chuquichaico, Rolando Gandhi
2016-09-15T21:17:25Z
2016-09-15T21:17:25Z
1999
http://hdl.handle.net/20.500.14076/2152
En el presente trabajo se realiza el estudio de la Existencia de Ciclos Límites en Sistemas Dinámicos de la forma: x' — y — F(x), y1 = —g(x). Este sistema puede tener uno o más ciclos límites el cual dependerá de las características propias de la función y = F(x), además, si el sistema tiene más de un ciclo límite estos estarán distribuidos de diferentes maneras dependiendo del número de puntos singulares que pueda tener el sistema. Si consideramos que el sistema dado, tiene como único punto singular el origen (0,0), si f(x) = F’(x), y n el número de ceros positivos de f(x) en el intervalo <0,d>. Se puede encontrar condiciones apropiadas para la función y=F(x) de modo que el sistema tenga al menos n ciclos límites. En el presente trabajo probaremos el teorema que sigue. Teorema. Supongamos que en el sistema x' = y — F(x), y’ = —g(x), F(x) y g(x) satisfacen las condiciones: 1) : F(-x) = -F{x) y g(-x) = -g(x) 2) : En el intervalo (0,b), f(x) tiene a lo más n ceros: 0< α1< α2 < ... < α1n < b; y F(α0) = 0 , F(α1) < 0 y F(αk). F(αk+1) < 0 , k = 1, 2, ...,n donde 0 = α0 y αn+1 = b 3) (-l)k F(αk) < (-l)k F(ak+2) y (-1)k+1F(ak+1) > (-1)k F(ak) + 2G(βk+1) para k = l,2,...,n - 1 donde βc+1 Ɛ (α k+1, α k+2) y F(βk+1) = F(α k). Entonces en la franja |x| ≤ b, el sistema dado tiene a lo más n ciclos límites. (es)
Tesis (es)
application/pdf (es)
spa (es)
Universidad Nacional de Ingeniería (es)
info:eu-repo/semantics/restrictedAccess (es)
http://creativecommons.org/licenses/by-nc-nd/4.0/ (es)
Universidad Nacional de Ingeniería (es)
Repositorio Institucional - UNI (es)
Ciclo limite (es)
Ecuaciones diferenciales (es)
Matemática (es)
Existencia de ciclos limites (es)
info:eu-repo/semantics/bachelorThesis (es)
Universidad Nacional de Ingeniería. Facultad de Ciencias (es)
Matemática (es)
Título Profesional (es)
Licenciado en Matemática (es)
Licenciatura (es)
Pública



This item is licensed under a Creative Commons License Creative Commons