Citas bibligráficas
Manrique, E., (2010). Geología estructural del neógeno en la cordillera negra, implicancias en el origen y estabilidad de taludes del yacimiento aurífero epitermal de alta sulfuración: Pierina [Tesis, Universidad Nacional de Ingeniería]. http://hdl.handle.net/20.500.14076/624
Manrique, E., Geología estructural del neógeno en la cordillera negra, implicancias en el origen y estabilidad de taludes del yacimiento aurífero epitermal de alta sulfuración: Pierina [Tesis]. : Universidad Nacional de Ingeniería; 2010. http://hdl.handle.net/20.500.14076/624
@mastersthesis{renati/703976,
title = "Geología estructural del neógeno en la cordillera negra, implicancias en el origen y estabilidad de taludes del yacimiento aurífero epitermal de alta sulfuración: Pierina",
author = "Manrique Zúñiga, Esteban Dionicio",
publisher = "Universidad Nacional de Ingeniería",
year = "2010"
}
The gold deposit of the Pierina mine has been exploited for more than ten years now. It was discovered by the presence of a mega-block located in in the Piruro hill. Pierina is a high-sulphidation epithermal gold-silver deposit, hosted in volcanic rocks of the Calipuy group, which were deposited in two stages: the first one between 46 to 23 Ma and the second stage between 16 to 13 Ma, including a volcanic inactivity period for this area of approximately 8 Ma. For the purposes of this study, tectonic events of the Qechua phase (Mioceno) and ancient Quaternary phase have been taken into consideration.. The most important volcanic and tectonic activity related to mineralization events occurred in the Miocene. The modification of the original geometry of the Pierina deposit occurred later by the effect of external geodynamic events in the early Quaternary tectonic phase. The Miocene internal geodynamicwas a regional process, that allowed the formation of the Tinyash and Roxana regional fault systems, which at different times acted as inverse, tensional and strike-slip fault systems. Volcanism and dome intrusions, and shear structures associated with alteration and gold mineralization were linked to these internal geodynamic processes. Furthermore, it has been recognized that the last regional tectonic movement was inverse and occurred in the ancient Quaternary reactivating altered and mineralized shear structures showing reverse fault movements. External geodynamic was related to gravity movements, natural or man-made, through a series of faults like Azucena and Milagros which caused rotational landslides of large volumes of rock masses, modifying the original geometry of the Pierina deposit. The alteration and mineralization of the Pierina mine occurred between 14.1 and 14.7 Ma, as an effect of hydrothermal fluids transported along the Katty and Torta shear structures. This alteration-mineralization was pervasive and become even more pervasive in the dacitic tuffs located in higher levels of the volcanic sequence. The Katty structures were intensively silicified showing “vuggy silica“ and laterally zoned quartz – alunite alteration. The lower levels of these structures contain enargite as crystals in cavities and pulvurulent in fractures, which has been interpreted as a result of intense fracturing of the structures followed by mylonitization and redistribution of the ore minerals. The gold values in the Katty structures are greater than 1 g/t, but are not economic due to the presence of sulfides. The alteration of the Torta shear structures is similar to the Katty structures, but the gold content is lower, about 0.01 g/t. The most striking geological structures formed in the study area are the faults, which led to the deposition of the volcanic rocks, mineralization, configuration of the geometry of the ore deposit and later the relocation of the mineralized bodies. In the aerial photos of the Pierina mine area, two major structural lineaments called Tinyash and Mirador have been mapped. The latter is exposed in the Pierina open pit and is registered as the Roxana fault. In the space between the faults Roxana and Tinyash, shear strctures were formed, which acted as feeders for the mineralization of the Pierina deposit. After the mineralization of the Pierina mine, up to three tectonic events occurred: Middle Miocene (10 Ma), Upper Miocene (7 Ma) and ancient Quaternary Phase (2 Ma), which deformed, exhumed the ore deposit and created the slope instability conditions that conducted to land slide movements of certain mineralized blocks. Furthermore, as the Roxana fault and the shear structures dip to the south side, it is assumed that the mineralizing fluids came from that sector. Constrained by low permeability rocks and andesitic flow domes QFP, these fluids reach their maximum expansion along the tuffs of acidic composition, which were mineralized. As a result of the last reverse movement, which affected the faults Tinyash and Roxana, as well as the shear structures, the hanging-wall blocks were exhumed and moved down slope along the Milagros and Azucena faults. The Roxana fault is widely exposed in the western and eastern walls of the open pit. It has an azimuth of approximately 125° anddip varying between 35° to 45° SW. The reverse fault is evidenced by numerous dragging structures, and the “pitch“ indicate a movement direction towards N30° E. The reverse faults activated in the ancient Quaternary exposed blocks of the hanging-wall, leading to slope instability, alteration and formation of supergene material (soft rock), which subsequently slipped downwards and formed the hills named Piruro, Torta, Quinquishinca and other megablocks described in the text. Currently, the pre-existing Azucena and Milagros faults are still reactivated and remain unstable and dynamic.Repeated landslides occurred during the mining operation. Three potentially vulnerable areas have been identified, where special care must be taken to avoid damages to buildings and other civil constructions: Zone A: Zone of the Azucena faults Zone B: Area of the Milagros faults Zone C: Zone of the sedimentation pools.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons