Buscar en Google Scholar
Título: Construcción de un prototipo de sistema para clasificar enfermedades en las hojas de cafeto basado en visión computacional
Asesor(es): Enciso Rodas, Lauro
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.02.02
Fecha de publicación: 2020
Institución: Universidad Nacional de San Antonio Abad del Cusco
Resumen: Existen enfermedades y plagas que afectan al crecimiento del cafeto que son clasificadas haciendo uso de métodos tradicionales, manuales y visuales generando un margen de error en los resultados y tiempos de respuesta prolongados en los diagnósticos, en consecuencia, se tiene mayor índice de expansión de enfermedades en los cultivos de cafeto, mala calidad de granos y disminución en la producción del café. Sin embargo carecemos de una herramienta tecnológica eficaz y automática para la clasificación de enfermedades, por ello la necesidad de construir un prototipo de sistema de clasificación de enfermedades en las hojas del cafeto basado en visión computacional, y mostrar información técnica de las mismas para plantear un mejor control; las enfermedades afectan al fruto como a las hojas, en algunos casos se puede apreciar en la raíz de la planta, entre las enfermedades que dañan las hojas se tiene; Leucoptera Coffeella, Mycena Citricolor, Hemileia Vastatrix. Para contrarrestar las enfermedades de manera eficiente en tiempo prudente se construye un prototipo de sistema de clasificación de enfermedades constituido en 3 partes, primero, la construcción de un conjunto de datos (dataset de imágenes) de validación y entrenamiento formado por 1000 imágenes de enfermedades de interés, en segundo lugar, se diseña una arquitectura de red neuronal convolucional para la fase de entrenamiento y clasificación de la enfermedad, así mismo, se propone modelos de redes neuronales convolucionales ya construidos como el modelo VGG-16, AlexNet e InceptionV3 los cuales fueron entrenados en un entorno virtual denominado Google Colaboratory; la imagen de entrada a ser clasificada sufre transformaciones de preprocesamiento como técnicas de segmentación de imágenes, ecualización de imágenes y filtros de suavizado; finalmente se construye el prototipo del sistema haciendo uso del modelo ya entrenado y los módulos de segmentación de imágenes basado en color y umbralizacio´n para poder separar la región sana y enferma solo en caso de Hemileia Vastatrix, así mismo, se complementa con la información técnica de las enfermedades a tratar tales como biología, agente causal, daño y control. Desarrollado en entorno de escritorio, así el proceso de clasificación se realiza en tiempo real, sin conocimiento previo adquirido a través de la experiencia, menor margen de error y es diagnosticado inmediatamente por los especialistas o caficultores evitando la propagación masiva de la enfermedad.
Disciplina académico-profesional: Ingeniería Informática y de Sistemas
Institución que otorga el grado o título: Universidad Nacional de San Antonio Abad del Cusco. Facultad de Ingeniería Eléctrica, Electrónica, Informática y Mecánica
Grado o título: Ingeniero Informático y de Sistemas
Jurado: Berrios Barcena, David Reynaldo; Flores Pacheco, Lino Prisciliano; Acurio Usca, Nila Zonia; Chavez Centeno, Javier David; Palomino Olivera, Emilio; Villafuerte Serna, Rony
Fecha de registro: 30-ene-2021



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons