Citas bibligráficas
Suclle, D., Assereto, A. (2024). Sistema de recomendación inteligente para mejorar la toma de decisiones en la fijación de precios de productos hortícolas en las microempresa [Tesis, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/675796
Suclle, D., Assereto, A. Sistema de recomendación inteligente para mejorar la toma de decisiones en la fijación de precios de productos hortícolas en las microempresa [Tesis]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/675796
@misc{renati/669486,
title = "Sistema de recomendación inteligente para mejorar la toma de decisiones en la fijación de precios de productos hortícolas en las microempresa",
author = "Assereto Huamani, Andres Antonio",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
The purpose of this project is to implement an Intelligent Recommendation System to improve the pricing of horticultural products in microenterprises in Lima. In addition, the PMBOK methodology will be used for the management of the project, and it will comply with the Student Outcome. To achieve this objective, the project was organized, setting out the problems, main and specific objectives, and project management. Then, an analysis was carried out on which prediction model should be used for the predictions, where the XGBoostRegressor was used, and taking this into account, a Recommendation System was developed using Machine Learning algorithms for short-term price predictions. Having the system developed, we proceeded to test the effectiveness of prediction, where the average effectiveness should exceed 90%. After this, we proceeded to test the Recommendation System in a real environment (Gran Mercado Mayorista de Lima), where 3 tests were conducted to different segments of microentrepreneurs based on questions related to indicators Reliability, Usability and Accuracy, which, making a global count for each test, should exceed 50% approval by the microentrepreneurs. Finally, a Continuity Plan was developed to ensure the long-term vitality of the Recommender System, with roles assigned to each plan, such as the Incident Management Plan, Problem Management Plan, Service Level Management Plan, among others.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons