Buscar en Google Scholar
Título: Cota de Klingenberg en la extensión del teorema de la esfera a variedades riemannianas
Asesor(es): Zavaleta Gomez, Juana Idelza
Fecha de publicación: 30-dic-2019
Institución: Universidad Nacional del Altiplano. Repositorio Institucional - UNAP
Resumen: La investigación planteó la extensión del teorema de la esfera a variedades riemannianas de dimensión n>3. Fundamentalmente esta extensión se debe a Berger y Klingenberg, siendo este último quien desarrolló la estimación del radio de inyectividad para una variedad cuya característica es poseer curvatura seccional positiva y unitaria. El objetivo principal fue demostrar que con las condiciones de curvatura gaussiana positiva una superficie conexa y compacta no puede ser otra superficie más que la esfera, para lo cual se busca establecer un homeomorfismo entre una variedad M compacta y simplemente conexa que satisfaga determinadas condiciones sobre la curvatura seccional y la esfera unitaria S^n; dicha condición que se impuso es: trabajar con variedades riemannianas cuya curvatura seccional estén contenidas estrictamente en el intervalo (1/4,1], donde h=1/4 es la cota de Klingenberg. Para ello se estudió los teoremas de estimación de Klingenberg con la finalidad de encontrar una cota óptima para el radio de inyectividad y con ello proporcionarle una estructura a la variedad para construir el homeomorfismo.
Disciplina académico-profesional: Ciencias Físico Matemáticas
Institución que otorga el grado o título: Universidad Nacional del Altiplano. Facultad de Ingeniería Civil y Arquitectura
Grado o título: Licenciada en Ciencias Físico Matemáticas
Fecha de registro: 9-sep-2020



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons