Buscar en Google Scholar
Título: El lema de Urysohn y algunas de sus aplicaciones
Asesor(es): Villalta Pacori, Julio Cesar
Fecha de publicación: 20-jun-2018
Institución: Universidad Nacional del Altiplano. Repositorio Institucional - UNAP
Resumen: En el presente trabajo de investigación, primeramente se prueba el Teorema de Urysohn (lema de Urysohn), en el cual indica que un espacio topológico es normal si, y sólo si, cualquier par de subconjuntos disjuntos y cerrados pueden ser separados por una función continua. Este lema se utiliza comúnmente para la construcción de funciones continuas con varias propiedades en espacios normales. Es ampliamente aplicable, ya que todos los espacios métricos y todos los espacios de Hausdorff compactos son normales. Una primera aplicación del Lema de Urysohn constituye el Teorema de Metrización de Urysohn. Otra aplicación es el Teorema de Extensión de Tietze. Finalmente, probamos un Teorema que estable la conexión entre el lema de Urysohn y el Teorema de extensión de Tietze.
Disciplina académico-profesional: Ciencias Físico Matemáticas
Institución que otorga el grado o título: Universidad Nacional del Altiplano. Facultad de Ingeniería Civil y Arquitectura
Grado o título: Licenciado en Ciencias Físico Matemáticas
Fecha de registro: 9-jul-2018



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons