Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Cavero, J., (2021). Índices de gérmenes de foliaciones holomorfas en el plano [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/19482
Cavero, J., Índices de gérmenes de foliaciones holomorfas en el plano []. PE: Pontificia Universidad Católica del Perú; 2021. http://hdl.handle.net/20.500.12404/19482
@mastersthesis{renati/539381,
title = "Índices de gérmenes de foliaciones holomorfas en el plano",
author = "Cavero Chuquiviguel, Jorge Edinson",
publisher = "Pontificia Universidad Católica del Perú",
year = "2021"
}
Título: Índices de gérmenes de foliaciones holomorfas en el plano
Autor(es): Cavero Chuquiviguel, Jorge Edinson
Asesor(es): Neciosup Puican, Hernán
Palabras clave: Foliaciones (Matemáticas); Curvas algebráicas
Campo OCDE: http://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 16-jun-2021
Institución: Pontificia Universidad Católica del Perú
Resumen: Un germen de foliación holomorfa singular en (C2, p) con singularidad aislada se
dirá que es de segundo tipo si no presenta sillas-nodos tangentes en su reducción
de singularidades. Entendiendo por singularidad de tipo silla-nodo tangente
como aquel cuya separatriz débil está contenida en el divisor excepcional. La
finalidad de este trabajo es exhibir un criterio que nos permita caracterizar
cuándo un germen de foliación holomorfa en (C2, p) es de segundo tipo. Para tal
fin, estudiamos la teoría de índices para foliaciones holomorfas singulares sobre
(C2, p). También caracterizamos las foliaciones de tipo curva generalizada, vía
el índice de exceso polar. Cabe señalar que el presente trabajo es motivado por
el trabajo debido a Arturo Fernández y Rogério Mol, ([FPM17]). Además de
los trabajos expuestos por Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]),
Yohann Genzmer y Rogério Mol ([GM18]).
A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).
A germ of singular holomorphic foliation at (C2, p) with an isolated singularity will be said of second type if it does not present tangent saddle-nodes in its reduction of singularities. Understanding by singularity of tangent saddle-node type as whose weak separatrix is contained in the exceptional divisor. The purpose of this work is to show a criterion that allows us to characterize when a germ of holomorphic foliation at (C2, p) is of second type. That is the reason why we study the theory of indices of singular holomorphic foliations at (C2, p). We also characterize generalized curve foliations, via the polar excess index. It should be noted that this work is motivated by the paper due to Arturo Fernández and Rogério Mol ([FPM17]), Marco Brunella ([BRU97]), Liliana Puchuri ([PM05]), Yohann Genzmer and Rogério Mol ([GM18]).
Enlace al repositorio: http://hdl.handle.net/20.500.12404/19482
Disciplina académico-profesional: Matemáticas
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Maestro en Matemáticas
Jurado: Beltrán Cortez, Andrés William; Neciosup Puican, Hernán; Fernández Pérez, Arturo Ulises
Fecha de registro: 16-jun-2021
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons