Citas bibligráficas
Medina, N., (2021). Estratificación del espacio de foliaciones holomorfas de grado 4 en el plano proyectivo complejo [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/19909
Medina, N., Estratificación del espacio de foliaciones holomorfas de grado 4 en el plano proyectivo complejo []. PE: Pontificia Universidad Católica del Perú; 2021. http://hdl.handle.net/20.500.12404/19909
@phdthesis{renati/538440,
title = "Estratificación del espacio de foliaciones holomorfas de grado 4 en el plano proyectivo complejo",
author = "Medina García de Correa, Nélida Salomé",
publisher = "Pontificia Universidad Católica del Perú",
year = "2021"
}
The classification of holomorphic foliations in P2C is a partially solved problem. Cano et al describe those of degrees 0, 1 in PnC, and Cerveau et al those of degree 2 with only one singularity in P2C. Mumford and Fogarty prove that by restricting the linear action of a reductive group G on semistable points of a projective variety X we obtain a good quotient. The aim of this work is stratify the space of holomorphic foliations of degree 4 in the complex projective plane, denoted by F4. For that, we study the linear action of the automorphisms group of P2 C by change of coordinates on F4 in the sense of the Geometric invariant theory. Applying results and methods developed by Hesselink, Kirwan and Alcántara we construct a stratification of F4 by locally closed, irreducible, non-singular algebraic subvarieties. We obtain a characterization of the generic foliation of strata with isolated singularities according to the Milnor number and multiplicity of a common singular point, first non trivial jet, existence of invariant line, and we calculate the dimension of the stratum. We prove that the set of unstable foliations of F4 has two irreducible components. We obtain foliations of F4 with a unique singular point.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons