Citas bibligráficas
Diles, C., (2023). Espacio de Trabajo Matemático: una propuesta didáctica sobre perímetro y área de cuadriláteros para sexto grado de primaria [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/25447
Diles, C., Espacio de Trabajo Matemático: una propuesta didáctica sobre perímetro y área de cuadriláteros para sexto grado de primaria []. PE: Pontificia Universidad Católica del Perú; 2023. http://hdl.handle.net/20.500.12404/25447
@mastersthesis{renati/538102,
title = "Espacio de Trabajo Matemático: una propuesta didáctica sobre perímetro y área de cuadriláteros para sexto grado de primaria",
author = "Diles Gonçalves, Camila",
publisher = "Pontificia Universidad Católica del Perú",
year = "2023"
}
This research aims to analyze the mathematical work that would be promoted in a didactic proposal proposed for sixth-grade students on the perimeter and area of quadrilaterals (specifically squares and rectangles) using different artifacts. For the respective analysis, theoretical and methodological aspects of the Mathematical Work Space (MWS) theory were considered. The methodology used is of a qualitative type, which allows analyzing reality by describing and interpreting the phenomena through the meanings, and for this, an adaptation of the set of phases proposed by Hernández et al. (2014), where it is considered from the problem statement to the conclusions and future perspectives. The didactic proposal includes three tasks designed and built-in light of the Mathematical Work Space Theory to favor using different artifacts to solve them. Based on the expected mathematical actions, the analysis of the didactic proposal seeks to demonstrate the activation of the three geneses: semiotic genesis, instrumental genesis, and discursive genesis, emphasizing the activation of instrumental genesis. On the other hand, the activation of the three vertical planes is also expected: the Semiotic-Instrumental, Semiotic- Discursive, and Instrumental-Discursive, with the Semiotic-Instrumental being the vertical plane that appears most frequently. Likewise, reference is also made to the characterization of the paradigms in the geometry domain, among which the paradigms of Natural Geometry (GI) and Natural Axiomatic Geometry (GII) are evident; in addition, GI appears in the three tasks of the didactic proposal.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons