Citas bibligráficas
Sánchez, N., (2024). Procesos de generación de conjeturas con cuadriláteros en un entorno de geometría dinámica con profesores de educación básica regular [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/28072
Sánchez, N., Procesos de generación de conjeturas con cuadriláteros en un entorno de geometría dinámica con profesores de educación básica regular []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/28072
@mastersthesis{renati/537592,
title = "Procesos de generación de conjeturas con cuadriláteros en un entorno de geometría dinámica con profesores de educación básica regular",
author = "Sánchez León, Nestor",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
This research focuses on the study of the process of generating conjectures related to quadrilaterals in a dynamic geometry environment. Two activities that are solved using GeoGebra software are applied to analyse how four mathematics teachers generate conjectures when solving open geometry problem activities in this environment, where notions of quadrilaterals are mobilised. The relevance of this research lies in the fact that secondary school mathematics teachers need to understand how the formulation and argumentation of geometric conjectures is developed, especially when digital tools are used. We consider as a theoretical referential the Maintaining dragging-conjecturing model proposed by Baccaglini-Frank (2010, 2019), which allows us to describe and analyse conjecturing processes in dynamic geometry environments. The research methodology is qualitative, as our interest lies in observing, describing and analysing the conjectures formulated, and the method used is the case study. As for the results, the analysis of the activities made it possible to validate the relationship between the generation of conjectures and particular uses of the dragging tool, especially when the latter invariant is related to a trajectory. In particular, the maintenance entrainment usually appears twice in this type of activities, the first time when the solvers identify the intentionally induced invariant and the second time when establishing the conditional link between the intentionally observed invariant and the intentionally induced invariant. It is concluded that the drag-conjecture maintenance model allows to describe and understand the process of conjecture generation in a dynamic geometry environment.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons