Buscar en Google Scholar
Título: Automatic regularization parameter selection for the total variation mixed noise image restoration framework
Asesor(es): Rodríguez Valderrama, Paúl Antonio
Campo OCDE: https://purl.org/pe-repo/ocde/ford#2.02.05
Fecha de publicación: 27-mar-2013
Institución: Pontificia Universidad Católica del Perú
Resumen: Image restoration consists in recovering a high quality image estimate based only on observations. This is considered an ill-posed inverse problem, which implies non-unique unstable solutions. Regularization methods allow the introduction of constraints in such problems and assure a stable and unique solution. One of these methods is Total Variation, which has been broadly applied in signal processing tasks such as image denoising, image deconvolution, and image inpainting for multiple noise scenarios. Total Variation features a regularization parameter which defines the solution regularization impact, a crucial step towards its high quality level. Therefore, an optimal selection of the regularization parameter is required. Furthermore, while the classic Total Variation applies its constraint to the entire image, there are multiple scenarios in which this approach is not the most adequate. Defining different regularization levels to different image elements benefits such cases. In this work, an optimal regularization parameter selection framework for Total Variation image restoration is proposed. It covers two noise scenarios: Impulse noise and Impulse over Gaussian Additive noise. A broad study of the state of the art, which covers noise estimation algorithms, risk estimation methods, and Total Variation numerical solutions, is included. In order to approach the optimal parameter estimation problem, several adaptations are proposed in order to create a local-fashioned regularization which requires no a-priori information about the noise level. Quality and performance results, which include the work covered in two recently published articles, show the effectivity of the proposed regularization parameter selection and a great improvement over the global regularization framework, which attains a high quality reconstruction comparable with the state of the art algorithms.
Disciplina académico-profesional: Procesamiento de señales e imágenes digitales
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Maestro en Procesamiento de señales e imágenes digitales
Fecha de registro: 27-mar-2013



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons