Buscar en Google Scholar
Título: Reaction front propagation with thermal driven convection
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.03.00
Fecha de publicación: 13-ago-2024
Institución: Pontificia Universidad Católica del Perú
Resumen: Estudiamos la propagación de frentes químicos acoplados a efectos de convección debido a gradientes térmicos. Los frentes de reacción separan fluidos de diferentes densidades debido a gradientes térmicos y de composición. Estas diferencias de densidad pueden causar convección. Los frentes pueden describirse mediante una aproximación de frente delgado que separa producto y reactivo en el fluido. Para describir inestabilidades difusivas, el frente evoluciona según la ecuación de Kuramoto-Sivashinsky. Encontramos que el calor producido por la reacción genera convección en frentes exotérmicos que se propagan hacia arriba. Si el fluido de mayor densidad se encuentra encima del fluido de menor densidad, las fuerzas de flotación pueden generar convección. Encontramos que puede aparecer convección si el frente se propaga hacia abajo. Este caso describe fluido de menor densidad en la parte superior. También estudiamos la evolución no lineal de la ecuación de Kuramoto-Sivashinsky acoplada a hidrodinámica. Observamos aumento de velocidad para frentes que se propagan en canales estrechos debido a la convección. Analizamos el efecto de las pérdidas de calor en la propagación de frentes de reacción. La pérdida de calor depende del número de Biot, que representa la cantidad de flujo de calor a través de las fronteras. Para frentes que se propagan verticalmente, encontramos transiciones entre frentes axisimétricos y no axisimétricos, además de regiones de bistabilidad entre ellos. Para frentes que se propagan horizontalmente, la velocidad del frente aumenta a medida que aumentamos el ancho del canal, pero la razón de aumento es más rápida para números de Biot bajos.

We study chemical front propagation coupled to convection driven by thermal gradients. Reaction fronts separate fluids of different densities due to thermal and compositional gradients. We analyze the presence of convection due to these density differences. Reaction fronts can be described by a thin front approximation that separates reacted from unreacted fluid. For fronts undergoing diffusive instabilities, the front evolution equation corresponds to a Kuramoto-Sivashinsky equation. A horizontal flat front propagating in the vertical direction can exhibit additional instabilities due to density gradients. We found that heat released by the reaction at the front leads to convection for exothermic fronts propagating upward. A positive thermal expansion coefficient will place a higher density fluid above a fluid of lower density, therefore buoyancy forces may lead to convection. However, we also found that convection can appear if the front propagates downward, having the lower density fluid on top. We also solved the nonlinear evolution for the Kuramoto-Sivashinsky equation coupled to hydrodynamics. This shows an increase of speed for fronts propagating in narrow channels due to convection. We also analyze the effect of heat losses on the propagation of reaction fronts. Heat losses depend on a Biot number, which represents the amount of heat flow through the boundary. For vertical propagating fronts, we find transitions between axisymmetric and nonaxisymmetric fronts, and regions of bistability between them. For horizontal propagating fronts, the speed of the front increases as we increase the layer width, but the rate of increase is faster for low Biot numbers.
Disciplina académico-profesional: Física
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Doctor en Física
Jurado: Castillo Egoavil, Hernán Alfredo; Vásquez Rodríguez, Desiderio Augusto; Vilela Proaño, Pablo Martín; Stucchi Portocarrero, Luciano; Pando Lambruschini, Carlos Leopoldo
Fecha de registro: 13-ago-2024



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons