Buscar en Google Scholar
Título: Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
Asesor(es): Cuadros Valle, Jaime
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 4-oct-2018
Institución: Pontificia Universidad Católica del Perú
Resumen: The aim of this thesis is to study in detail the work of S. Kobayashi on the Riemannian geometry on principal S1-bundles. To be more precise, we explain how to obtain metrics with constant scalar curvature on these bundles. The method that we use is based in [18]. The basic idea behind Kobayashi’s construction is to slightly deform the Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding sectional curvatures are not far from the produced by the standard metrics on the sphere and the complex projective space on the Hopf fibration. This deformations can be controlled applying the notions of Riemaniann and Kahlerian pinching (see Chapter 3). Furthermore, thanks to a technique developed by Hatakeyama in [14], it is possible to obtain less generic metrics but with a larger set of symmetries on the total space: Sasaki metrics. Actually, If one chooses as a base space a K¨ahler-Einstein manifold with positive scalar curvature one can obtain a Sasaki-Einstein metric.
Disciplina académico-profesional: Matemáticas
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Maestro en Matemáticas
Fecha de registro: 4-oct-2018



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons