Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Lope, J., (2018). Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) [Tesis, Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/12829
Lope, J., Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles) [Tesis]. PE: Pontificia Universidad Católica del Perú; 2018. http://hdl.handle.net/20.500.12404/12829
@mastersthesis{renati/533892,
title = "Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)",
author = "Lope Vicente, Joe Moises",
publisher = "Pontificia Universidad Católica del Perú",
year = "2018"
}
Título: Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
Autor(es): Lope Vicente, Joe Moises
Asesor(es): Cuadros Valle, Jaime
Palabras clave: Geometría de Riemann; Grupos de Lie; Variedades (Matemáticas)
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 4-oct-2018
Institución: Pontificia Universidad Católica del Perú
Resumen: The aim of this thesis is to study in detail the work of S. Kobayashi on the
Riemannian geometry on principal S1-bundles. To be more precise, we explain
how to obtain metrics with constant scalar curvature on these bundles. The
method that we use is based in [18].
The basic idea behind Kobayashi’s construction is to slightly deform the
Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding
sectional curvatures are not far from the produced by the standard metrics
on the sphere and the complex projective space on the Hopf fibration. This
deformations can be controlled applying the notions of Riemaniann and
Kahlerian pinching (see Chapter 3).
Furthermore, thanks to a technique developed by Hatakeyama in [14], it
is possible to obtain less generic metrics but with a larger set of symmetries
on the total space: Sasaki metrics. Actually, If one chooses as a base space a
K¨ahler-Einstein manifold with positive scalar curvature one can obtain a
Sasaki-Einstein metric.
Enlace al repositorio: http://hdl.handle.net/20.500.12404/12829
Disciplina académico-profesional: Matemáticas
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Maestro en Matemáticas
Fecha de registro: 4-oct-2018
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons