Citas bibligráficas
Izquierdo, L., (2024). Propuesta metodológica para la optimización de modelos predictivos de generación de residuos sólidos municipales en zonas urbanas [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/28066
Izquierdo, L., Propuesta metodológica para la optimización de modelos predictivos de generación de residuos sólidos municipales en zonas urbanas []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/28066
@phdthesis{renati/533547,
title = "Propuesta metodológica para la optimización de modelos predictivos de generación de residuos sólidos municipales en zonas urbanas",
author = "Izquierdo Horna, Luis Antonio",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
Municipal solid waste (MSW) generation forecasting plays an essential role in decision making and provides relevant information for waste management, as well as a deep understanding of the factors that influence this process. In this work, a specific MSW prediction model was developed for Metropolitan Lima, based on sociocultural, environmental and economic variables, having 2019 as the reference year, due to the influence of COVID-19 on data on this topic in post-pandemic years. The model was constructed using per capita amounts of MSW generated in each district, along with parameters related to household fuel consumption (such as natural gas, electricity, and liquefied petroleum gas) and demographic characteristics of the population (such as age, education level, and monthly expenditure). Given the quality and availability of data, we chose to use the random forest algorithm as a prediction technique. The variables analyzed were obtained from the Residential Survey of Energy Consumption and Use (ERCUE) at the municipal level. The results indicated that the implemented algorithm explains 51% of the variability of the data. It is expected that the recommendations presented in this study will be useful for future research related to MSW prediction, contributing to obtain more accurate results applicable to specific contexts.
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons