Buscar en Google Scholar
Título: Aprendizaje profundo para transcripción de textos históricos manuscritos en español
Asesor(es): Beltrán Castañón, Cesar Armando
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.02.00
Fecha de publicación: 16-jul-2024
Institución: Pontificia Universidad Católica del Perú
Resumen: El reconocimiento de textos historicos es considerado un problema desafiante debido a los muchos factores que ´ alteran el estado de los manuscritos y la complejidad de los diferentes estilos de escritura involucrados en este tipo de documentos; en los anos recientes se han creado muchos modelos de Reconocimiento de textos manuscritos ˜ enfocados en diversos idiomas como el ingles, chino, ´ arabe y japon ´ es entre otros, sin embargo no se han ´ encontrado muchas iniciativas de reconocimiento de texto orientadas al idioma espanol debido fundamentalmente ˜ a un escasez de datasets publicos disponibles para ayudar a solucionar la problem ´ atica en dicho idioma. ´ En esta publicacion se presenta la aplicaci ´ on de t ´ ecnicas de Deep Learning basadas en una arquitectura de ´ red neuronal encoder-decoder y convoluciones compuerta Gated-CNN las cuales en los ultimos ha demostrado ´ resultados sobresalientes para resolver dicha problematica, as ´ ´ı mismo se propone la aplicacion de mecanismos de ´ Transferencia de Aprendizaje para el reconocimiento de textos historicos en espa ´ nol. Los experimentos demuestran ˜ que la aplicacion de estos m ´ etodos puede brindar resultados sobresalientes, adem ´ as la aplicaci ´ on de otras t ´ ecnicas ´ tales como Aumentacion de Datos y Modelos de Lenguaje conllevan a mejoras significativas en los resultados finales. ´ Se propone ademas el uso de un nuevo dataset de textos hist ´ oricos en espa ´ nol conformado por 1000 elementos ˜ tomados de textos historicos peruanos referentes al siglo XVIII.
Disciplina académico-profesional: Informática con mención en Ciencias de la Computación
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado.
Grado o título: Maestro en Informática con mención en Ciencias de la Computación
Jurado: Villanueva Talavera, Edwin Rafael; Beltrán Castañón, César Armando; Pineda Ancco, Ferdinand Edgardo
Fecha de registro: 16-jul-2024



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons