Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Bances, R., (2021). Clasificación de planos torcidos graduados [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/20811
Bances, R., Clasificación de planos torcidos graduados []. PE: Pontificia Universidad Católica del Perú; 2021. http://hdl.handle.net/20.500.12404/20811
@phdthesis{renati/529864,
title = "Clasificación de planos torcidos graduados",
author = "Bances Hernández, Ricardo Manuel",
publisher = "Pontificia Universidad Católica del Perú",
year = "2021"
}
Título: Clasificación de planos torcidos graduados
Autor(es): Bances Hernández, Ricardo Manuel
Asesor(es): Valqui Haase, Christian Holger
Palabras clave: Algebra; Productos tensoriales; Cálculo de tensores
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.00
Fecha de publicación: 5-nov-2021
Institución: Pontificia Universidad Católica del Perú
Resumen: En esta tesis se obtiene una clasificación casi completa de todos los productos tensoriales
torcidos graduados de K [x ] con K [y ]. Para ello se usa una representación
de un producto tensorial torcido graduado de K [x ] con K [y ] en el álgebra L(K N0 ),
la cual está inmersa en el conjunto de matrices infinitas con entradas en K .De esta
manera el problema de clasificar a los productos tensoriales torcidos graduados de
K [x ] con K [y ] se traduce en el problema de clasificar a las matrices infinitas con
entradas en K que satisfacen ciertas condiciones. Con este método se logra clasificar
a los productos tensoriales graduados de K [x ] con K [y ] en un ejemplo particular
y tres casos principales: álgebras cuadráticas, clasificadas porConner yGoetz
por métodos diferentes, una familia llamada A(n,d ,a) con la propiedad de n +1 - extensión para cualquier n 2 y un tercer caso no completamente clasificado, para
el cual se describen los cálculos iniciales que ilustran cómo se puede alcanzar la
clasificación de las posibles aplicaciones de torcimiento con una cantidad creciente
de cálculo computacional. Además, en este tercer caso, se obtiene una familia
de productos tensoriales torcidos graduados B(a,L) parametrizada por una familia
de sucesiones casi-balanceadas. Los miembros de la familia B(a,L) no tienen
la propiedad dem- extensión, para ningún m.
In this thesis, an almost complete classification of all graduated twisted tensorial products of K [x] with K [y] is obtained. For this purpose, a representation of a graduated twisted tensor product of K [x ] with K [y ] in the algebra L(K N0 ), which is immersed in the set of infinite matrices with entries in K , it is used. Thus the problem of classifying the graduated twisted tensor products of K [x ] with K [y ] results in the problem of classifying infinite matrices with inputs in K that satisfy certain conditions.With this method it is possible to classify the graduated tensor products of K [x ] with K [y ] in a particular example and three main cases: quadratic algebras, classified by Conner and Goetz by different methods, a family called A(n,d ,a) with the property of n +1 - extension for n 2, and a third case not fully classified for which there are shown initial calculations illustrating how classification of possible twisting applications with an increasing amount of computational calculation can be achieved. Furthermore, in this third case, a family of products graduated twisted tensor B(a,L) parametrized by a family of quasi-balanced sequences is obtained.Members of B(a,L) family do not have them-extension property, for nom.
In this thesis, an almost complete classification of all graduated twisted tensorial products of K [x] with K [y] is obtained. For this purpose, a representation of a graduated twisted tensor product of K [x ] with K [y ] in the algebra L(K N0 ), which is immersed in the set of infinite matrices with entries in K , it is used. Thus the problem of classifying the graduated twisted tensor products of K [x ] with K [y ] results in the problem of classifying infinite matrices with inputs in K that satisfy certain conditions.With this method it is possible to classify the graduated tensor products of K [x ] with K [y ] in a particular example and three main cases: quadratic algebras, classified by Conner and Goetz by different methods, a family called A(n,d ,a) with the property of n +1 - extension for n 2, and a third case not fully classified for which there are shown initial calculations illustrating how classification of possible twisting applications with an increasing amount of computational calculation can be achieved. Furthermore, in this third case, a family of products graduated twisted tensor B(a,L) parametrized by a family of quasi-balanced sequences is obtained.Members of B(a,L) family do not have them-extension property, for nom.
Enlace al repositorio: http://hdl.handle.net/20.500.12404/20811
Disciplina académico-profesional: Matemáticas
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado.
Grado o título: Doctor en Matemáticas
Jurado: Arce Flores, Jack Denne; Valqui Haase, Christian Holger; Guccione -, Jorge Alberto; Cortiñas -, Guillermo; Muñoz Márquez, Gabriel Armando
Fecha de registro: 5-nov-2021
This item is licensed under a Creative Commons License