Bibliographic citations
This is an automatically generated citacion. Modify it if you see fit
Astoquillca, J., (2020). Gaussian Multiplicative Chaos [Tesis, Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/17752
Astoquillca, J., Gaussian Multiplicative Chaos [Tesis]. PE: Pontificia Universidad Católica del Perú; 2020. http://hdl.handle.net/20.500.12404/17752
@mastersthesis{renati/529286,
title = "Gaussian Multiplicative Chaos",
author = "Astoquillca Aguilar, Jhon Kevin",
publisher = "Pontificia Universidad Católica del Perú",
year = "2020"
}
Title: Gaussian Multiplicative Chaos
Authors(s): Astoquillca Aguilar, Jhon Kevin
Advisor(s): Beltran Ramirez, Johel Victorino
Keywords: Martingalas (Matemáticas); Variables aleatorias
OCDE field: http://purl.org/pe-repo/ocde/ford#1.01.00
Issue Date: 21-Dec-2020
Institution: Pontificia Universidad Católica del Perú
Abstract: La teoría de Kolmogorov-Obukhov-Mandelbrot de disipación de energía en
desarrollo de turbulencia se estableció para estudiar el comportamiento caótico
de los fluidos. En ausencia de una base matemática rigurosa, Kahane introduce el
caos gaussiano multiplicativo como un objeto aleatorio inspirado en la teoría del
caos aditivo desarrollada por Wiener. En esta tesis desarrollamos teoría aleatoria
en el espacio de medidas de Radon con el objetivo de definir rigurosamente el caos
multiplicativo gaussiano. Seguimos el artículo de Kahane y debilitamos algunas
condiciones para proporcionar una introducción accesible y autocontenida.
The Kolmogorov-Obukhov-Mandelbrot theory of energy dissipation in turbulence developed was established to study the chaotic behavior of fluids. In the absence of a rigorous mathematical basis, Kahane introduced the Gaussian multiplicative chaos as a random object inspired by the additive chaos theory developed by Wiener. In this thesis we developed random theory in the spaces of Radon measures in order to rigorously define Gaussian multiplicative chaos. We follow Kahane’s paper and weaken some conditions to provide an accessible and selfcontained introduction.
The Kolmogorov-Obukhov-Mandelbrot theory of energy dissipation in turbulence developed was established to study the chaotic behavior of fluids. In the absence of a rigorous mathematical basis, Kahane introduced the Gaussian multiplicative chaos as a random object inspired by the additive chaos theory developed by Wiener. In this thesis we developed random theory in the spaces of Radon measures in order to rigorously define Gaussian multiplicative chaos. We follow Kahane’s paper and weaken some conditions to provide an accessible and selfcontained introduction.
Link to repository: http://hdl.handle.net/20.500.12404/17752
Discipline: Matemáticas
Grade or title grantor: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grade or title: Maestro en Matemáticas
Juror: Farfan Vargas, Jonathan Samuel; Beltran Ramirez, Johel Victorino; Panizo Garcia, Gonzalo
Register date: 22-Dec-2020
This item is licensed under a Creative Commons License