Citas bibligráficas
Esta es una referencia generada automáticamente. Modifíquela de ser necesario
Ruelas, D., (2024). Advances in quantum state tomography and strong measurements of quantum weak values [Pontificia Universidad Católica del Perú]. http://hdl.handle.net/20.500.12404/26841
Ruelas, D., Advances in quantum state tomography and strong measurements of quantum weak values []. PE: Pontificia Universidad Católica del Perú; 2024. http://hdl.handle.net/20.500.12404/26841
@phdthesis{renati/529035,
title = "Advances in quantum state tomography and strong measurements of quantum weak values",
author = "Ruelas Paredes, David Reinaldo Alejandro",
publisher = "Pontificia Universidad Católica del Perú",
year = "2024"
}
Título: Advances in quantum state tomography and strong measurements of quantum weak values
Autor(es): Ruelas Paredes, David Reinaldo Alejandro
Asesor(es): Massoni Kamimoto, Eduardo Rubén
Palabras clave: Teoría cuántica; Polarización (Física nuclear); Mecánica cuántica
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.03.00
Fecha de publicación: 19-ene-2024
Institución: Pontificia Universidad Católica del Perú
Resumen: Este trabajo contiene dos contribuciones al campo de la teoría cuántica. La primera
viene por doble partida: un protocolo óptico para producir y realizar tomografía de
estados puros, arbitrarios, de dos qubits codificados en grados de libertad de camino y
polarización; y un protocolo generalizado para hacer tomografía de estados mixtos del
mismo tipo. Se reporta una realización con luz láser del primer esquema, la cual sirve
como prueba de concepto. La segunda contribución es un modelo dentro del paradigma
de von Neumann para las mediciones. Su utilidad yace en que permite estudiar el
efecto de la fuerza del acoplamiento entre sistema y puntero sobre la incertidumbre
estadística y los errores sistemáticos que resultan de medir valores débiles cuánticos
y estados puros. Esta propuesta –cuya implementación con luz láser o con fotones
individuales es también explicada– fue demostrada usando sistemas de computación
cuántica provistos por IBM. Los resultados obtenidos mediante mediciones con distintos
grados de fuerza disipan la idea de que las mediciones fuertes siempre dan mejores
resultados que sus contrapartes débiles. Quizá más importante todavía, esta realización
experimental aporta evidencia de que es posible maximizar la precisión y exactitud de
los parámetros medidos si se elige adecuadamente el acoplamiento de la medición.
This work consists of two contributions to the broader field of quantum theory. The first contribution is twofold: an all-optical protocol for producing and measuring arbitrary, pure, two-qubit states that are encoded in path and polarization degrees of freedom; and a generalized protocol for characterizing mixed states of the same kind. A laser light realization of the former scheme is reported, which serves as a proof of principle. The second contribution concerns a model within the von Neumann measurement paradigm. Its usefulness lies in that it enables the study of what effects system-pointer coupling strength has on the statistical uncertainty and systematic errors arising from the measurement of quantum weak values and pure states. This proposal–whose implementation with laser light or individual photons is also explained–was demonstrated in IBM’s quantum computing systems. The results obtained in a range of measurement strengths dispel the notion that strong measurements always perform better than their weaker counterparts. Perhaps more importantly, this experimental realization provides evidence that it is possible to maximize the precision and accuracy of the measured parameters with a properly chosen coupling.
This work consists of two contributions to the broader field of quantum theory. The first contribution is twofold: an all-optical protocol for producing and measuring arbitrary, pure, two-qubit states that are encoded in path and polarization degrees of freedom; and a generalized protocol for characterizing mixed states of the same kind. A laser light realization of the former scheme is reported, which serves as a proof of principle. The second contribution concerns a model within the von Neumann measurement paradigm. Its usefulness lies in that it enables the study of what effects system-pointer coupling strength has on the statistical uncertainty and systematic errors arising from the measurement of quantum weak values and pure states. This proposal–whose implementation with laser light or individual photons is also explained–was demonstrated in IBM’s quantum computing systems. The results obtained in a range of measurement strengths dispel the notion that strong measurements always perform better than their weaker counterparts. Perhaps more importantly, this experimental realization provides evidence that it is possible to maximize the precision and accuracy of the measured parameters with a properly chosen coupling.
Enlace al repositorio: http://hdl.handle.net/20.500.12404/26841
Disciplina académico-profesional: Física
Institución que otorga el grado o título: Pontificia Universidad Católica del Perú. Escuela de Posgrado
Grado o título: Doctor en Física
Jurado: De Zela Martinez, Francisco Antonio; Massoni Kamimoto, Eduardo Ruben; Ortiz Cabello, Omar Hernan; Mundarain, Douglas Fernando; Hermann Avigliano, Carla Andrea
Fecha de registro: 19-ene-2024
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons