Bibliographic citations
Bravo, A., Volta, M. (2024). Modelo de predicción de la siniestralidad vial en el subtramo: Huarmey-Casma de la Concesión Red Vial N°4: Carretera Pativilca – Trujillo basada en Crash Modification Factors y Star Rating Scores para la prevención de siniestros viales [Trabajo de investigación, Universidad Peruana de Ciencias Aplicadas (UPC)]. http://hdl.handle.net/10757/674918
Bravo, A., Volta, M. Modelo de predicción de la siniestralidad vial en el subtramo: Huarmey-Casma de la Concesión Red Vial N°4: Carretera Pativilca – Trujillo basada en Crash Modification Factors y Star Rating Scores para la prevención de siniestros viales [Trabajo de investigación]. PE: Universidad Peruana de Ciencias Aplicadas (UPC); 2024. http://hdl.handle.net/10757/674918
@mastersthesis{renati/502219,
title = "Modelo de predicción de la siniestralidad vial en el subtramo: Huarmey-Casma de la Concesión Red Vial N°4: Carretera Pativilca – Trujillo basada en Crash Modification Factors y Star Rating Scores para la prevención de siniestros viales",
author = "Volta Alomia, Mario Martin",
publisher = "Universidad Peruana de Ciencias Aplicadas (UPC)",
year = "2024"
}
This research work focuses on obtaining a model for predicting road accidents in the Huarmey-Casma segment of Concession Red Vial No. 4, addressing a global issue that disproportionately affects low- and middle-income countries. A methodology combining Crash Modification Factors (CMF) and Star Rating Scores (SRS) is used to characterize the road accident risk and propose prevention strategies. Historical data analysis revealed critical sectors between kilometers 320 and 350, where 94 segments with 1 and 2 stars requiring intervention were identified. The implementation of preventive measures focuses on improving horizontal curves, implementing vehicle restraint systems, and controlling speeding. Additionally, the installation of an Intelligent Transport System (ITS) with section radars to deter speeding is proposed. The developed multiple linear regression suggests that attributes such as shoulder width and radius are decisive in road risk, yielding an adjusted R-squared of 0.8007. Model validation shows effective correlation between the proposed measures and the reduction of road risk, using a statistical formula called GEH to compare results, verifying that for the 90 segments GEH < 5. The application of CMF and SRS, along with the implementation of specific measures, proves to be effective in predicting and preventing road accidents in the studied segment, providing a solid foundation for improving road safety.
This item is licensed under a Creative Commons License