Buscar en Google Scholar
Título: Una generalización de cohomología local para complejos de módulos
Asesor(es): Pérez Salvatierra, Alfonso
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.01
Fecha de publicación: 2022
Institución: Universidad Nacional Mayor de San Marcos
Resumen: Sean A un anillo conmutativo perfecto, a un ideal de A y φ un conjunto no vacío de ideales de A. Denotemos por D(A) la categoría derivada de la categoría de los A-módulos y por D f<(A) la subcategoría plena de D(A) cuyos objetos son los A-complejos limitados a la izquierda con cohomología nita. En este trabajo introducimos los funtores derivados RΓa,φ(−), LΛ a,φ(−) : D(A) −→ D(A), y probamos que si X• ∈ D(A) e Y• ∈ Df<(A). Entonces existe un isomorsmo natural RHom A(RΓa,φ(X•),Y•) RHomA(X,LΛ a,φ(Y•)). Nuestro resultado es una generalización, en el contexto de los anillos perfectos, del celebrado Teorema de Dualidad de Greenlees-May.
Disciplina académico-profesional: Matemática Pura
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Unidad de Posgrado
Grado o título: Doctor en Matemática Pura
Jurado: Cabanillas Lapa, Eugenio; Coripaco Huarcaya, Jorge Alberto; Caro Tuesta, Napoleón
Fecha de registro: 6-sep-2022



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons