Citas bibligráficas
Cárdenas, J., (2015). Pronósticos y comparación de una serie de tiempo con cambios estructurales mediante la red neuronal artificial de retropropagación resiliente y modelos no lineales [Tesis, Universidad Nacional Mayor de San Marcos]. https://hdl.handle.net/20.500.12672/4297
Cárdenas, J., Pronósticos y comparación de una serie de tiempo con cambios estructurales mediante la red neuronal artificial de retropropagación resiliente y modelos no lineales [Tesis]. PE: Universidad Nacional Mayor de San Marcos; 2015. https://hdl.handle.net/20.500.12672/4297
@misc{renati/490291,
title = "Pronósticos y comparación de una serie de tiempo con cambios estructurales mediante la red neuronal artificial de retropropagación resiliente y modelos no lineales",
author = "Cárdenas Garro, José Antonio",
publisher = "Universidad Nacional Mayor de San Marcos",
year = "2015"
}
In this research an alternative to Box and Jenkins methodology, where you can demonstrate the modeling of nonlinear time series, using parametric and nonparametric approach is proposed methodological approach. In the parametric approach, we prefer the extension of the methods of Box and Jenkins, ie ARCH, GARCH, TGARCH models among others, for modeling nonlinear time series, in which we obtain forecasts for 2012 for the series time: Number of returnees back Peruvians by year by means of air transport. In the parametric approach not present the method of the Resilient Backpropagation Neural Network for modeling nonlinear time series, in which we obtain forecasts of 2012 to the time series: Number of returnees back Peruvians by year by means of air transport. The time series studied for this research presents a structural change during the years of 2000-2003, which leads to the nonlinearity of the series. The estimation of the two approaches will be compared and approach that gives better predictions will be chosen, which will choose validation using indicators such as MAD (mean deviation residual) and SSE (sum of the squares of the waste)
Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons