Buscar en Google Scholar
Título: Controlabilidad exacta interna para la ecuación semilineal del calor
Asesor(es): Cabanillas Zannini, Víctor Rafael
Campo OCDE: https://purl.org/pe-repo/ocde/ford#1.01.01
Fecha de publicación: 2018
Institución: Universidad Nacional Mayor de San Marcos
Resumen: Estudia el problema de la controlabilidad exacta en el interior del dominio Ω asociado a la ecuación semilineal parabólica { y′ − ∆y + f(y) = h , en Q | y = 0 , sobre Σ | y(0) = y0 , en Ω. Se demuestra que para cada estado inicial y 0 ∈ L 2 (Ω) y cada estado final z 0 ∈ L 2 (Ω), es posible encontrar una función control h ∈ L 2 (0, T; H−1 (Ω)) que al actuar sobre el sistema conduzca al estado y(x, t) hacia el estado final z 0 en el tiempo T. Además, se demuestra que el control h es Lipschitz continúo sobre los estados finales y se estudia el comportamiento de h cuando f tiende a cero. En la parte final del trabajo se estudia algunas aplicaciones del teorema principal, por ejemplo a los modelos semilineales de Fisher, Kierstead, Slobodkin y Skellam, Fisher - KPP y Jin-ichi-Nagumo.
Disciplina académico-profesional: Matemática Pura
Institución que otorga el grado o título: Universidad Nacional Mayor de San Marcos. Facultad de Ciencias Matemáticas. Unidad de Posgrado
Grado o título: Magíster en Matemática Pura
Jurado: Ramos Chumpitaz, Oswaldo Napoleón; López Cruz, Roxana; Santiago Ayala, Yolanda Silvia; Luyo Sánchez, José Raúl
Fecha de registro: 28-nov-2018



Este ítem está sujeto a una licencia Creative Commons Licencia Creative Commons Creative Commons